Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012 (2012), Article ID 801694, 10 pages
http://dx.doi.org/10.1155/2012/801694
Review Article

Heterogeneous Photo-Fenton Reaction Catalyzed by Nanosized Iron Oxides for Water Treatment

1Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China
2Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China

Received 7 June 2012; Accepted 31 July 2012

Academic Editor: Jiaguo Yu

Copyright © 2012 Chuan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Neyens and J. Baeyens, “A review of classic Fenton's peroxidation as an advanced oxidation technique,” Journal of Hazardous Materials, vol. 98, no. 1–3, pp. 33–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. J. Pignatello, “Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide,” Environmental Science & Technology, vol. 26, no. 5, pp. 944–951, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Sun and J. J. Pignatello, “Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV,” Environmental Science & Technology, vol. 27, no. 2, pp. 304–310, 1993. View at Google Scholar · View at Scopus
  4. N. Miguel, M. P. Ormad, R. Mosteo, and J. L. Ovelleiro, “Photocatalytic degradation of pesticides in natural water: effect of hydrogen peroxide,” International Journal of Photoenergy, vol. 2012, Article ID 371714, 11 pages, 2012. View at Publisher · View at Google Scholar
  5. F. Z. Shi, Y. G. Li, Q. H. Zhang, and H. Z. Wang, “Synthesis of Fe3O4/C/TiO2 magnetic photocatalyst via vapor phase hydrolysis,” International Journal of Photoenergy, vol. 2012, Article ID 365401, 8 pages, 2012. View at Publisher · View at Google Scholar
  6. J. De Laat, T. G. Le, and B. Legube, “A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2,” Chemosphere, vol. 55, no. 5, pp. 715–723, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. D. Laat and T. G. Le, “Kinetics and modeling of the Fe(III)/H2O2 system in the presence of sulfate in acidic aqueous solutions,” Environmental Science & Technology, vol. 39, no. 6, pp. 1811–1818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Ensing, F. Buda, and E. J. Baerends, “Fenton-like chemistry in water: oxidation catalysis by Fe(III) and H2O2,” Journal of Physical Chemistry A, vol. 107, no. 30, pp. 5722–5731, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Zhang, D. Zhang, and J. Zhou, “Removal of COD from landfill leachate by electro-fenton method,” Journal of Hazardous Materials, vol. 135, no. 1–3, pp. 106–111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Zhang, H. J. Choi, and C. P. Huang, “Optimization of Fenton process for the treatment of landfill leachate,” Journal of Hazardous Materials, vol. 125, no. 1–3, pp. 166–174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. M. Cheng, W. H. Ma, J. Li et al., “Visible-light-assisted degradation of dye pollutants over Fe(III)-loaded resin in the presence of H2O2 at neutral pH values,” Environmental Science & Technology, vol. 38, no. 5, pp. 1569–1575, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. X. L. Liang, Y. H. Zhong, S. Y. Zhu et al., “The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite,” Journal of Hazardous Materials, vol. 199-200, pp. 247–254, 2012. View at Google Scholar
  13. C. Cornu, J. L. Bonardet, S. Casale et al., “Identification and location of iron species in Fe/SBA-15 catalysts: interest for catalytic Fenton reaction,” Journal of Physical Chemistry C, vol. 116, no. 5, pp. 3437–3448, 2012. View at Google Scholar
  14. M. Fang, T. V. Volotinen, S. K. Kulkarni, L. Belova, and K. V. Rao, “Effect of embedding Fe3O4 nanoparticles in silica spheres on the optical transmission properties of three-dimensional magnetic photonic crystals,” Journal of Applied Physics, vol. 108, no. 10, Article ID 103501, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. P. Sun and A. T. Lemley, “p-nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: process optimization, kinetics, and degradation pathways,” Journal Molecular Catatalysis A, vol. 349, no. 1-2, pp. 71–79, 2011. View at Google Scholar
  16. M. H. Rasoulifard, M. H. Hosseini, and S. Masoudian, “Photo-assisted hetero-Fenton decolorization of azo dye from contaminated water by Fe-Si mixed oxide nanocomposite,” Environmental Technology, vol. 32, no. 14, pp. 1627–1635, 2011. View at Google Scholar
  17. E. G. Garrido-Ramírez, B. K. G. Theng, and M. L. Mora, “Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—a review,” Applied Clay Science, vol. 47, no. 3-4, pp. 182–192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Martínez, G. Calleja, J. A. Melero, and R. Molina, “Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst,” Applied Catalysis B, vol. 60, no. 3-4, pp. 181–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Jitianu, M. Crisan, A. Meghea, I. Rau, and M. Zaharescu, “Influence of the silica based matrix on the formation of iron oxide nanoparticles in the Fe2O3-SiO2 system, obtained by sol-gel method,” Journal of Materials Chemistry, vol. 12, no. 5, pp. 1401–1407, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. Q. Han, S. Y. Yang, X. Yang et al., “Cobalt catalyzed peroxymonosulfate oxidation: a review of mechanisms and applications on degradating organic pollutants in water,” Progress in Chemistry, vol. 24, no. 1, pp. 144–156, 2012. View at Google Scholar
  21. G. Q. Zhang, S. Wang, and F. L. Yang, “Efficient adsorption and combined heterogeneous/homogeneous Fenton oxidation of amaranth using supported nano-FeOOH as cathodic catalysts,” Journal of Physical Chemistry C, vol. 116, no. 5, pp. 3623–3634, 2012. View at Google Scholar
  22. F. Yuan, C. Hu, X. X. Hu, D. Wei, Y. Chen, and J. Qu, “Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process,” Journal of Hazardous Materials, vol. 185, no. 2-3, pp. 1256–1263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. S. Lucas, J. A. Peres, and P. G. Li, “Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics,” Separation and Purification Technology, vol. 72, no. 3, pp. 235–241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Muneer, I. A. Bhatti, E. Ehsan-Ul-Haq, M. Safdar, and F. Fazal-Ur-Rehman, “Applications of advanced oxidation process for industrial wastewater treatment,” Asian Journal of Chemistry, vol. 22, no. 4, pp. 3087–3093, 2010. View at Google Scholar · View at Scopus
  25. E. Brillas, I. Sirés, and M. A. Oturan, “Electro-fenton process and related electrochemical technologies based on Fenton's reaction chemistry,” Chemical Reviews, vol. 109, no. 12, pp. 6570–6631, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Sung and J. J. Morgan, “Kinetics and product of ferrous iron oxygenation in aqueous systems,” Environmental Science & Technology, vol. 14, no. 5, pp. 561–568, 1980. View at Google Scholar · View at Scopus
  27. H. D. Basheer, A. A. R. Abdul, and D. W. M. A. Wan, “Oxidative mineralisation of petroleum refinery effluent using Fenton-like process,” Chemical Engineering Research and Design, vol. 90, no. 2, pp. 298–307, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. K. S. Mihir, “Degradation and mineralization, of organic contaminants by Fenton and photo-Fenton processes: review of mechanisms and effects of organic and inorganic additives,” Research Journal of Chemistry and Environment, vol. 15, no. 2, pp. 96–112, 2011. View at Google Scholar
  29. C. Cezar, A. Daniela, and A. Petru, “Degradation of 4-chlorophenol from wastewater through heterogeneous Fenton and photo-Fenton process, catalyzed by Al-Fe PILC,” Applied Clay Science, vol. 58, pp. 96–101, 2012. View at Google Scholar
  30. E. Brillas, R. Sauleda, and J. Casado, “Degradation of 4-chlorophenol by anodic oxidation, electro-fenton, photoelectro-fenton, and peroxi-coagulation processes,” Journal of the Electrochemical Society, vol. 145, no. 3, pp. 759–765, 1998. View at Google Scholar · View at Scopus
  31. B. Boye, M. M. Dieng, and E. Brillas, “Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods,” Environmental Science & Technology, vol. 36, no. 13, pp. 3030–3035, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Brillas and J. Casado, “Aniline degradation by electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment,” Chemosphere, vol. 47, no. 3, pp. 241–248, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Brillas, M. A. Baños, and J. A. Garrido, “Mineralization of herbicide 3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton,” Electrochimica Acta, vol. 48, no. 12, pp. 1697–1705, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Brillas, J. C. Calpe, and J. Casado, “Mineralization of 2,4-D by advanced electrochemical oxidation processes,” Water Research, vol. 34, no. 8, pp. 2253–2262, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Liu, C. Wang, X. Z. Li, X. L. Xuan, C. Jiang, and H. N. Cui, “A novel electro-Fenton process for water treatment: reaction-controlled pH adjustment and performance assessment,” Environmental Science & Technology, vol. 41, no. 8, pp. 2937–2942, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Walling, “Fenton's reagent revisited,” Accounts of Chemical Research, vol. 8, no. 4, pp. 125–131, 1975. View at Google Scholar
  37. A. Bozzi, T. Yuranova, J. Mielczarski, and J. Kiwi, “Evidence for immobilized photo-Fenton degradation of organic compounds on structured silica surfaces involving Fe recycling,” New Journal of Chemistry, vol. 28, no. 4, pp. 519–526, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. R. M. Cornell and U. Schwertmann, The Iron Oxides, Willy, 2003.
  39. Q. J. Xiang, J. G. Yu, and P. K. Wong, “Quantitative characterization of hydroxyl radicals produced by various photocatalysts,” Journal of Colloid and Interface Science, vol. 357, no. 1, pp. 163–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. X. X. Yu, S. W. Liu, and J. G. Yu, “Superparamagnetic γ-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties,” Applied Catalysis B, vol. 104, no. 1-2, pp. 12–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. T. X. Liu, Y. Liu, Z. J. Zhang, F. B. Li, and X. Z. Li, “Comparison of aqueous photoreactions with TiO2 in its hydrosol solution and powdery suspension for light utilization,” Industrial & Engineering Chemistry Research, vol. 50, no. 13, pp. 7841–7848, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Kay, I. Cesar, and M. Grätzel, “New benchmark for water photooxidation by nanostructured α-Fe2O3 films,” Journal of the American Chemical Society, vol. 128, no. 49, pp. 15714–15721, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. S. K. Maji, N. Mukherjee, A. Mondal, and B. Adhikary, “Synthesis, characterization and photocatalytic activity of α-Fe2O3 nanoparticles,” Polyhedron, vol. 33, no. 1, pp. 145–149, 2012. View at Google Scholar
  44. S. Hu, G. L. Liu, D. W. Zhu, C. Chen, and S. Liao, “Synthesis, characterization, and evaluation of boron-doped iron oxides for the photocatalytic degradation of atrazine under visible light,” International Journal of Photoenergy, vol. 2012, Article ID 598713, 4 pages, 2012. View at Publisher · View at Google Scholar
  45. L. P. Zhu, N. C. Bing, L. L. Wang et al., “Self-assembled 3D porous flowerlike α-Fe2O3 hierarchical nanostructures: synthesis, growth mechanism, and their application in photocatalysis,” Dalton Transaction, vol. 2012, no. 41, pp. 2959–2965, 2012. View at Google Scholar
  46. H. W. Gao, C. Liu, H. E. Jeong, and P. D. Yang, “Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars,” ACS Nano, vol. 6, no. 1, pp. 234–240, 2012. View at Google Scholar
  47. J. A. Byrne, P. A. Fernandez-Ibanez, P. S. M. Dunlop, D. M. A. Alrousan, and J. W. J. Hamilton, “Photocatalytic enhancement for solar disinfection of water: a review,” International Journal of Photoenergy, vol. 2011, Article ID 798051, 12 pages, 2011. View at Publisher · View at Google Scholar
  48. U. Schwertmann and R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, John Wiley & Sons, 2008.
  49. E. Expósito, C. M. Sánchez-Sánchez, and V. Montiel, “Mineral iron oxides as iron source in electro-fenton and photoelectro-fenton mineralization processes,” Journal of the Electrochemical Society, vol. 154, no. 8, pp. E116–E122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. G. K. Pradhan and K. M. Parida, “Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods,” ACS Applied Materials & Interfaces, vol. 3, no. 2, pp. 317–323, 2011. View at Google Scholar
  51. V. Chhabra, P. Ayyub, S. Chattopadhyay, and A. N. Maitra, “Preparation of acicular γ-Fe2O3 particles from a microemulsion-mediated reaction,” Materials Letters, vol. 26, no. 1-2, pp. 21–26, 1996. View at Google Scholar · View at Scopus
  52. C. J. Jia, L. D. Sun, Z. G. Yan et al., “Single-crystalline iron oxide nanotubes,” Angewandte Chemie, vol. 44, no. 28, pp. 4328–4333, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Q. Su and B. Yan, “The synthesis and luminescence of YPxV1-xO4:Dy3+ microcrystalline phosphors by in situ co-precipitation composition of hybrid precursors,” Materials Chemistry and Physics, vol. 93, no. 2-3, pp. 552–556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. H. Ni, X. F. Cao, G. G. Wu, G. Hu, Z. Yang, and X. Wei, “Preparation, characterization and property study of zinc oxide nanoparticles via a simple solution-combusting method,” Nanotechnology, vol. 18, no. 15, Article ID 155603, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. X. Wang, X. Y. Chen, L. S. Gao et al., “Synthesis of β-FeOOH and α-Fe2O3 nanorods and electrochemical properties of β-FeOOH,” Journal of Materials Chemistry, vol. 14, no. 5, pp. 905–907, 2004. View at Google Scholar · View at Scopus
  56. Z. M. Li, X. Y. Lai, H. Wang, D. Mao, C. Xing, and D. Wang, “Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine,” Nanotechnology, vol. 20, no. 24, Article ID 245603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Cornu, J. L. Bonardet, S. Casale et al., “Identification and location of iron species in Fe/SBA-15 catalysts: interest for catalytic Fenton reactions,” Journal of Physical Chemistry C, vol. 116, pp. 3437–3448, 2012. View at Google Scholar
  58. Y. Y. Fu, R. M. Wang, J. Xu et al., “Synthesis of large arrays of aligned α-Fe2O3 nanowires,” Chemical Physics Letters, vol. 379, no. 3-4, pp. 373–379, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. X. H. Wang, L. Zhang, Y. H. Ni, J. Hong, and X. Cao, “Fast preparation, characterization, and property study of α-Fe2O3 nanoparticles via a simple solution-combusting method,” Journal of Physical Chemistry C, vol. 113, no. 17, pp. 7003–7008, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Huang, J. G. Guan, Z. D. Xiao, G. Tong, F. Mou, and X. Fan, “Flower-like porous hematite nanoarchitectures achieved by complexation-mediated oxidation-hydrolysis reaction,” Journal of Colloid and Interface Science, vol. 357, no. 1, pp. 36–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Sun, H. Zeng, D. B. Robinson et al., “Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles,” Journal of the American Chemical Society, vol. 126, no. 1, pp. 273–279, 2004. View at Google Scholar · View at Scopus
  62. H. Deng, X. L. Li, Q. Peng, X. Wang, J. Chen, and Y. Li, “Monodisperse magnetic single-crystal ferrite microspheres,” Angewandte Chemie, vol. 44, no. 18, pp. 2782–2785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Hamada and E. Matijević, “Ferric hydrous oxide sols. IV. Preparation of uniform cubic hematite particles by hydrolysis of ferric chloride in alcohol-water solutions,” Journal of Colloid And Interface Science, vol. 84, no. 1, pp. 274–277, 1981. View at Google Scholar · View at Scopus
  64. M. Ozaki, S. Kratohvil, and E. Matijević, “Formation of monodispersed spindle-type hematite particles,” Journal of Colloid and Interface Science, vol. 102, no. 1, pp. 146–151, 1984. View at Google Scholar · View at Scopus
  65. K. G. Pradhan and K. M. Parida, “Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods,” ACS Appied Materials & Interfaces, vol. 3, pp. 317–323, 2011. View at Google Scholar
  66. L. P. Zhu, G. H. Liao, N. C. Bing, X. Zhao, and Y. Y. Gu, “Synthesis of monodisperse shuttle-like α-Fe2O3 nanorods via the EDA-assisted method,” Materials Letters, vol. 65, no. 9, pp. 1287–1290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. R. M. Wang, Y. F. Chen, Y. Y. Fu, H. Zhang, and C. Kisielowski, “Bicrystalline hematite nanowires,” Journal of Physical Chemistry B, vol. 109, no. 25, pp. 12245–12249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. X. Qu, N. Kobayashi, and T. Komatsu, “Solid nanotubes comprising α-Fe2O3 nanoparticles prepared from ferritin protein,” ACS Nano, vol. 4, no. 3, pp. 1732–1738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. X. G. Wen, S. H. Wang, Y. Ding, Z. L. Wang, and S. Yang, “Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires,” Journal of Physical Chemistry B, vol. 109, no. 1, pp. 215–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. W. Zhu, T. Yu, C. H. Sow et al., “Efficient field emission from α- Fe2O3 nanoflakes on an atomic force microscope tip,” Applied Physics Letters, vol. 87, no. 2, Article ID 023103, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. H. J. Zhou and S. S. Wong, “A facile and mild synthesis of 1-D ZnO, CuO, and α-Fe2O3 nanostructures and nanostructured arrays,” ACS Nano, vol. 2, no. 5, pp. 944–958, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. X. H. Wang, L. Zhang, Y. H. Ni, J. Hong, and X. Cao, “Fast preparation, characterization, and property study of α-Fe2O3 nanoparticles via a simple solution-combusting method,” Journal of Physical Chemistry C, vol. 113, no. 17, pp. 7003–7008, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. F. Mazille, T. Schoettl, N. Klamerth, S. Malato, and C. Pulgarin, “Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH,” Water Research, vol. 44, no. 10, pp. 3029–3038, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. F. Mazille, A. Lopez, and C. Pulgarin, “Synergistic effect of TiO2 and iron oxide supported on fluorocarbon films. Part 2: long-term stability and influence of reaction parameters on photoactivated degradation of pollutants,” Applied Catalysis B, vol. 90, no. 3-4, pp. 321–329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. N. Murakami, T. Chiyoya, T. Tsubota, and T. Ohno, “Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength,” Applied Catalysis A, vol. 348, no. 1, pp. 148–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. M. H. Rasoulifarda, H. H. Monfareda, and S. Masoudiana, “Photo-assisted hetero-Fenton decolorization of azo dye from contaminated water by Fe-Si mixed oxide nanocomposite,” Environmental Technology, vol. 32, no. 14, pp. 1627–2635, 2011. View at Google Scholar
  77. C. H. Ho, Y. J. Huang, and Y. H. Huang, “Degradation of azo dye reactive black b using an immobilized iron oxide in a batch photo-fluidized bed reactor,” Environmental Engineering Science, vol. 27, no. 12, pp. 1043–1048, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Wang, W. P. Du, and Y. M. Xu, “Effect of sintering temperature on the photocatalytic activities and stabilities of hematite and silica-dispersed hematite particles for organic degradation in aqueous suspensions,” Langmuir, vol. 25, no. 5, pp. 2895–2899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. Q. Lan, F. Li, C. Liu, and X. Z. Li, “Heterogeneous photodegradation of pentachlorophenol with maghemite and oxalate under UV illumination,” Environmental Science & Technology, vol. 42, no. 21, pp. 7918–7923, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. F. B. Li, X. Z. Li, X. M. Li, T. X. Liu, and J. Dong, “Heterogeneous photodegradation of bisphenol A with iron oxides and oxalate in aqueous solution,” Journal of Colloid and Interface Science, vol. 311, no. 2, pp. 481–490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Wang, C. S. Liu, F. B. Li, C. P. Liu, and J. B. Liang, “Photodegradation of polycyclic aromatic hydrocarbon pyrene by iron oxide in solid phase,” Journal of Hazardous Materials, vol. 162, no. 2-3, pp. 716–723, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. X. Z. Li, H. Liu, L. F. Cheng, and H. J. Tong, “Photocatalytic oxidation using a new catalyst—TiO2 microsphere—for water and wastewater treatment,” Environmental Science & Technology, vol. 37, no. 17, pp. 3989–3994, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. B. H. Lai, C. C. Yeh, and D. H. Chen, “Surface modification of iron oxide nanoparticles with polyarginine as a highly positively charged magnetic nano-adsorbent for fast and effective recovery of acid proteins,” Process Biochemistry, vol. 47, no. 5, pp. 799–805, 2012. View at Google Scholar
  84. D. Das, S. Roy, J. W. Chen, and D. Chakravorty, “Interface controlled electrical and magnetic properties in Fe-Fe3O4-silica gel nanocomposites,” Journal of Applied Physics, vol. 91, no. 7, pp. 4573–4579, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Nakamura, Y. Yamada, and K. Yano, “Novel synthesis of highly monodispersed γ-Fe2O3/SiO2 and ε-Fe2O3/SiO2 nanocomposite spheres,” Journal of Materials Chemistry, vol. 16, no. 25, pp. 2417–2419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. L. F. González-Bahamón, F. Mazille, L. N. Benítez, and C. Pulgarín, “Photo-Fenton degradation of resorcinol mediated by catalysts based on iron species supported on polymers,” Journal of Photochemistry and Photobiology A, vol. 217, no. 1, pp. 201–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Fernandez, J. Bandara, A. Lopez, P. Buffat, and J. Kiwi, “Photoassisted Fenton degradation of nonbiodegradable azo dye (Orange II) in Fe-free solutions mediated by cation transfer membranes,” Langmuir, vol. 15, no. 1, pp. 185–192, 1999. View at Google Scholar · View at Scopus
  88. M. Rios-Enriquez, N. Shahin, C. D. Bazua et al., “Optimization of the heterogeneous Fenton-oxidation of the model pollutant 2,4-xylidine using the optimal experimental design methodology,” Solar Energy, vol. 77, no. 5, pp. 491–501, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. C. L. Hsueh, Y. H. Huang, and C. Y. Chen, “Novel activated alumina-supported iron oxide-composite as a heterogeneous catalyst for photooxidative degradation of reactive black 5,” Journal of Hazardous Materials, vol. 129, no. 1–3, pp. 228–233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Azabou, W. Najjar, A. Gargoubi, A. Ghorbel, and S. Sayadi, “Catalytic wet peroxide photo-oxidation of phenolic olive oil mill wastewater contaminants. Part II. Degradation and detoxification of low-molecular mass phenolic compounds in model and real effluent,” Applied Catalysis B, vol. 77, no. 1-2, pp. 166–174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. M. I. Pariente, F. Martínez, J. A. Melero et al., “Heterogeneous photo-Fenton oxidation of benzoic acid in water: effect of operating conditions, reaction by-products and coupling with biological treatment,” Applied Catalysis B, vol. 85, no. 1-2, pp. 24–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. X. R. Zhao, L. H. Zhu, Y. Y. Zhang et al., “Removing organic contaminants with bifunctional iron modified rectorite as efficient adsorbent and visible light photo-Fenton catalyst,” Journal Hazardours Materials, vol. 215, pp. 57–64, 2012. View at Google Scholar
  93. X. M. Zhou, J. Y. Lan, G. Liu et al., “Facet-mediated photodegradation of organic dye over hematite architectures by visible light,” Angewandte Chemie, vol. 51, pp. 178–182, 2012. View at Google Scholar
  94. A. Dhakshinamoorthy, S. Navalon, M. Alvaro, and H. Garcia, “Metal nanoparticles as heterogeneous Fenton catalysts,” ChemSusChem, vol. 5, no. 1, pp. 46–64, 2012. View at Google Scholar
  95. K. Nam, W. Rodriguez, and J. J. Kukor, “Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction,” Chemosphere, vol. 45, no. 1, pp. 11–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. D. H. Lin, X. L. Tian, F. C. Wu, and B. S. Xing, “Fate and transport of engineered nanomaterials in the environment,” Journal of Environmental Quality, vol. 39, no. 6, pp. 1896–1908, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. W. H. Fan, M. M. Cui, H. Liu et al., “Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna,” Environmental Pollution, vol. 159, no. 3, pp. 729–734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. D. M. Wang, J. Hu, D. R. Irons, and J. M. Wang, “Synergistic toxic effect of nano-TiO2 and As(V) on Ceriodaphnia dubia,” Science of the Total Environment, vol. 409, no. 7, pp. 1351–1356, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. J. Hu, D. Wang, J. T. Wang, and J. M. Wang, “Bioaccumulation of Fe2O3(magnetic) nanoparticles in Ceriodaphnia dubia,” Environmental Pollution, vol. 162, pp. 216–222, 2012. View at Google Scholar
  100. T. J. Brunner, P. Wick, P. Manser et al., “In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility,” Environmental Science & Technology, vol. 40, no. 14, pp. 4374–4381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. T. R. Pisanic II, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones, and S. Jin, “Nanotoxicity of iron oxide nanoparticle internalization in growing neurons,” Biomaterials, vol. 28, no. 16, pp. 2572–2581, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Schwegmann, A. J. Feitz, and F. H. Frimmel, “Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli,” Journal of Colloid and Interface Science, vol. 347, no. 1, pp. 43–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. B. A. Katsnelson, T. D. Degtyareva, I. I. Minigalieva et al., “Subchronic systemic toxicity and bioaccumulation of Fe3O4 nano- and microparticles following repeated intraperitoneal administration to rats,” International Journal of Toxicology, vol. 30, no. 1, pp. 59–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. T. Phenrat, T. C. Long, G. V. Lowry, and B. Veronesi, “Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron,” Environmental Science & Technology, vol. 43, no. 1, pp. 195–200, 2009. View at Publisher · View at Google Scholar · View at Scopus