Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012 (2012), Article ID 823498, 6 pages
http://dx.doi.org/10.1155/2012/823498
Research Article

Effect of Fe Concentration on Fe-Doped Anatase TiO2 from GGA + U Calculations

1Department of Materials Engineering, Ming Chi University of Technology, 84 Gungjuan Road, Taishan, New Taipei 24301, Taiwan
2Center for Thin Film Technologies and Applications, Ming Chi University of Technology, New Taipei 24301, Taiwan

Received 28 February 2012; Revised 23 May 2012; Accepted 29 May 2012

Academic Editor: Jincai Zhao

Copyright © 2012 Hsuan-Chung Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Tsuyumoto and K. Nawa, “Thermochromism of vanadium-titanium oxide prepared from peroxovanadate and peroxotitanate,” Journal of Materials Science, vol. 43, no. 3, pp. 985–988, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. K. Du, Y. Q. Gan, P. Yang, F. Zhao, N. P. Hua, and L. Jiang, “Improvement in the heat-induced hydrophilicity of TiO2 thin films by doping Mo(VI) ions,” Thin Solid Films, vol. 491, no. 1-2, pp. 133–136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, and M. Anpo, “Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2,” Catalysis Today, vol. 84, no. 3-4, pp. 191–196, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Zhu, T. Shi, W. Liu et al., “Direct determination of local structure around Fe in anatase TiO2,” Physica B, vol. 396, no. 1-2, pp. 177–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Naeem and F. Ouyang, “Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light,” Physica B, vol. 405, no. 1, pp. 221–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Subramanian, S. Vijayalakshmi, S. Venkataraj, and R. Jayavel, “Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol-gel process,” Thin Solid Films, vol. 516, no. 12, pp. 3776–3782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Sarkar, C. K. Ghosh, U. N. Maiti, and K. K. Chattopadhyay, “Effect of spin polarization on the optical properties of Co-doped TiO2 thin films,” Physica B, vol. 406, no. 8, pp. 1429–1435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Wenbin, D. Shurong, W. Demiao, and R. Gaochao, “Investigation of microstructure evolution in Pt-doped TiO2 thin films deposited by rf magnetron sputtering,” Physica B, vol. 403, no. 17, pp. 2698–2701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Zhou, J. Zhang, B. Cheng, and H. Yu, “Enhancement of visible-light photocatalytic activity of mesoporous Au-TiO2 nanocomposites by surface plasmon resonance,” International Journal of Photoenergy, vol. 2012, Article ID 532843, 10 pages, 2012. View at Google Scholar
  11. H. Fu, G. Shang, S. Yang, and T. Xu, “Mechanistic study of visible-light-induced photodegradation of 4-chlorophenol by TiO2xNx (0.021<x<0.049) with low nitrogen concentration,” International Journal of Photoenergy, vol. 2012, Article ID 759306, 9 pages, 2012. View at Google Scholar
  12. J. Qian, G. Cui, M. Jing, Y. Wang, M. Zhang, and J. Yang, “Hydrothermal synthesis of nitrogen-doped titanium dioxide and evaluation of its visible light photocatalytic activity,” International Journal of Photoenergy, vol. 2012, Article ID 198497, 6 pages, 2012. View at Google Scholar
  13. M. V. Dozzi, S. Livraghi, E. Giamello, and E. Selli, “Photocatalytic activity of S- and F-doped TiO2 in formic acid mineralization,” Photochemical & Photobiological Sciences, vol. 10, no. 3, pp. 343–349, 2011. View at Google Scholar
  14. Y. Lv, L. Yu, H. Huang, H. Liu, and Y. Feng, “Preparation, characterization of P-doped TiO2 nanoparticles and their excellent photocatalystic properties under the solar light irradiation,” Journal of Alloys and Compounds, vol. 488, no. 1, pp. 314–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, “Band gap narrowing of titanium dioxide by sulfur doping,” Applied Physics Letters, vol. 81, no. 3, pp. 454–456, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Zhou, J. Yu, and B. Cheng, “Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method,” Journal of Hazardous Materials, vol. 137, no. 3, pp. 1838–1847, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Zhang, Y. Wu, M. Xing, S. A. K. Leghari, and S. Sajjad, “Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides,” Energy and Environmental Science, vol. 3, no. 6, pp. 715–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Zhang, Y. Shen, F. Gu, M. Wu, Y. Xie, and J. Zhang, “Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films,” Applied Surface Science, vol. 256, no. 1, pp. 85–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. C. Wang, H. J. Lin, and T. S. Yang, “Characteristics and optical properties of iron ion (Fe3+)-doped titanium oxide thin films prepared by a sol-gel spin coating,” Journal of Alloys and Compounds, vol. 473, no. 1-2, pp. 394–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Weng, M. Ma, P. Du et al., “Superhydrophilic Fe doped titanium dioxide thin films prepared by a spray pyrolysis deposition,” Surface and Coatings Technology, vol. 198, no. 1–3, pp. 340–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. B. Naceur, R. Mechiakh, F. Bousbih, and R. Chtourou, “Influences of the iron ion (Fe3+)-doping on structural and optical properties of nanocrystalline TiO2 thin films prepared by sol-gel spin coating,” Applied Surface Science, vol. 257, no. 24, pp. 10699–10703, 2011. View at Publisher · View at Google Scholar
  22. Y. Yalçin, M. Kiliç, and Z. Çinar, “Fe+3-doped TiO2: a combined experimental and computational approach to the evaluation of visible light activity,” Applied Catalysis B, vol. 99, no. 3-4, pp. 469–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Hou, M. Huang, X. Wu, and A. Liu, “First-principles calculations on implanted TiO2 by 3d transition metal ions,” Science in China, Series G, vol. 52, no. 6, pp. 838–842, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Su, Y. Xiao, Y. Li, Y. Du, and Y. Zhang, “Preparation, photocatalytic performance and electronic structures of visible-light-driven Fe-N-codoped TiO2 nanoparticles,” Materials Chemistry and Physics, vol. 126, no. 3, pp. 761–768, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Jia, C. Wu, S. Han et al., “Theoretical study on the electronic and optical properties of (N, Fe)-codoped anatase TiO2 photocatalyst,” Journal of Alloys and Compounds, vol. 509, no. 20, pp. 6067–6071, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. D. Segall, P. J. D. Lindan, M. J. Probert et al., “First-principles simulation: ideas, illustrations and the CASTEP code,” Journal of Physics Condensed Matter, vol. 14, no. 11, pp. 2717–2744, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Physical Review B, vol. 41, no. 11, pp. 7892–7895, 1990. View at Publisher · View at Google Scholar · View at Scopus
  28. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, no. 12, pp. 5188–5192, 1976. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Wu and R. E. Cohen, “More accurate generalized gradient approximation for solids,” Physical Review B, vol. 73, no. 23, Article ID 235116, 6 pages, 2006. View at Google Scholar
  30. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study,” Physical Review B, vol. 57, no. 3, pp. 1505–1509, 1998. View at Google Scholar · View at Scopus
  31. G. Shao, “Red shift in manganese- and iron-doped TiO2: a DFT+U analysis,” Journal of Physical Chemistry C, vol. 113, no. 16, pp. 6800–6808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, “Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K,” Journal of the American Chemical Society, vol. 109, no. 12, pp. 3639–3646, 1987. View at Google Scholar · View at Scopus
  33. C. Adán, A. Bahamonde, M. Fernández-García, and A. Martínez-Arias, “Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation,” Applied Catalysis B, vol. 72, no. 1-2, pp. 11–17, 2007. View at Publisher · View at Google Scholar · View at Scopus