Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 832516, 7 pages
http://dx.doi.org/10.1155/2012/832516
Research Article

Investigation on the Photoelectrocatalytic Activity of Well-Aligned TiO2 Nanotube Arrays

1School of Materials Science and Technology, China University of Geosciences-Beijing, Beijing 100083, China
2School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

Received 29 August 2011; Revised 5 November 2011; Accepted 5 November 2011

Academic Editor: Jiaguo Yu

Copyright © 2012 Xiaomeng Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Grandcolas, A. Louvet, N. Keller, and V. Keller, “Layer-by-layer deposited titanate-based nanotubes for solar photocatalytic removal of chemical warfare agents from textiles,” Angewandte Chemie - International Edition, vol. 48, no. 1, pp. 161–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. T. L. Thompson and J. T. Yates, “Surface science studies of the photoactivation of TiO2—new photochemical processes,” Chemical Reviews, vol. 106, no. 10, pp. 4428–4453, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Radecka, M. Rekas, E. Kusior et al., “TiO2-based nanopowders and thin films for photocatalytical applications,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 2, pp. 1032–1042, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, “Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications,” Advanced Materials, vol. 18, no. 21, pp. 2807–2824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Z. Fan, G. P. Chen, D. M. Li et al., “Highly selective deethylation of rhodamine B on TiO2 prepared in supercritical fluids,” International Journal of Photoenergy, vol. 2012, Article ID 173865, 7 pages, 2012. View at Publisher · View at Google Scholar
  7. S. Wang, L. Zhao, J. Ran, Z. Shu, G. Dai, and P. Zhai, “Effects of calcination temperatures on photocatalytic activity of ordered titanate nanoribbon/SnO2 films fabricated during an EPD process,” International Journal of Photoenergy, vol. 2012, Article ID 472958, 7 pages, 2012. View at Publisher · View at Google Scholar
  8. S.-J. Kim, N.-H. Lee, H.-J. Oh, S.-C. Jung, W.-J. Lee, and D.-H. Kim, “Photocatalytic properties of nanotubular-shaped TiO2 powders with anatase phase obtained from titanate nanotube powder through various thermal treatments,” International Journal of Photoenergy, vol. 2011, Article ID 327821, 7 pages, 2011. View at Publisher · View at Google Scholar
  9. J. A. Byrne, P. A. Fernandez-Ibañez, P. S.M. Dunlop, D. M.A. Alrousan, and J. W.J. Hamilton, “Photocatalytic enhancement for solar disinfection of water: a review,” International Journal of Photoenergy, vol. 2011, Article ID 798051, 12 pages, 2011. View at Publisher · View at Google Scholar
  10. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Chandrasekharan and P. Y. Kamat, “Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles,” Journal of Physical Chemistry B, vol. 104, no. 46, pp. 10851–10857, 2000. View at Google Scholar · View at Scopus
  12. X. Z. Li, H. L. Liu, P. T. Yue, and Y. P. Sun, “Photoelectrocatalytic oxidation of rose Bengal in aqueous solution using a Ti/TiO2 mesh electrode,” Environmental Science and Technology, vol. 34, no. 20, pp. 4401–4406, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. C. Li and J. N. Shen, “Photoelectrochemical oxidation behavior of organic substances on TiO2 thin-film electrodes,” Journal of Solid State Electrochemistry, vol. 10, no. 12, pp. 980–986, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Li, L. Zheng, L. Li, Y. Xian, and L. Jin, “Fabrication of TiO2/Ti electrode by laser-assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue,” Journal of Hazardous Materials, vol. 139, no. 1, pp. 72–78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity,” Journal of the Electrochemical Society, vol. 153, no. 7, pp. D123–D127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Lai, H. Zhuang, L. Sun, Z. Chen, and C. Lin, “Self-organized TiO2 nanotubes in mixed organic-inorganic electrolytes and their photoelectrochemical performance,” Electrochimica Acta, vol. 54, no. 26, pp. 6536–6542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Wang, T. Hu, L. Hu et al., “Microstructured arrays of TiO2 nanotubes for improved photo-electrocatalysis and mechanical stabili,” Advanced Functional Materials, vol. 19, no. 12, pp. 1930–1938, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, and P. Schmuki, “Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications,” Nano Letters, vol. 7, no. 5, pp. 1286–1289, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Zhang, H. Huang, Y. Zhang, H. L. W. Chan, and L. Zhou, “Highly ordered nanoporous TiO2 and its photocatalytic properties,” Electrochemistry Communications, vol. 9, no. 12, pp. 2854–2858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Xu and J. Yu, “Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays,” Nanoscale, vol. 3, no. 8, pp. 3138–3144, 2011. View at Publisher · View at Google Scholar
  21. J. Yu and B. Wang, “Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays,” Applied Catalysis B, vol. 94, no. 3-4, pp. 295–302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Yu, G. Dai, and B. Cheng, “Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films,” Journal of Physical Chemistry C, vol. 114, no. 45, pp. 19378–19385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. S. Do and W. C. Yeh, “In situ degradation of formaldehyde with electrogenerated hypochlorite ion,” Journal of Applied Electrochemistry, vol. 25, no. 5, pp. 483–489, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. M. V. B. Zanoni, J. J. Sene, and M. A. Anderson, “Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes,” Journal of Photochemistry and Photobiology A, vol. 157, no. 1, pp. 55–63, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Radecka, M. Rekas, A. Trenczek-Zajac, and K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” Journal of Power Sources, vol. 181, no. 1, pp. 46–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. X. F. Cheng, W. H. Leng, O. Y. Pi , Z. Zhang, J. Q. Zhang, and C. N. Cao, “Enhancement of photocatalytic activity of TiO2 film electrode by in situ photoelectro-generating active chlorine,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 17, no. 5, pp. 1087–1092, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Liu, L. Yang, S. Xu, S. Luo, and Q. Cai, “Photocatalytic activities of C-N-doped TiO2 nanotube array/carbon nanorod composite,” Electrochemistry Communications, vol. 11, no. 9, pp. 1748–1751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. W. H. Leng, Z. Zhang, J. Q. Zhang, and C. N. Cao, “Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy,” Journal of Physical Chemistry B, vol. 109, no. 31, pp. 15008–15023, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Xu and S. U. M. Khan, “Photoresponse of visible light active carbon-modified -n-TiO2 thin films,” Electrochemical and Solid-State Letters, vol. 10, no. 3, pp. B56–B59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Rizzo, J. Koch, V. Belgiorno, and M. A. Anderson, “Removal of methylene blue in a photocatalytic reactor using polymethylmethacrylate supported TiO2 nanofilm,” Desalination, vol. 211, no. 1–3, pp. 1–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. F. Brugnera, K. Rajeshwar, J. C. Cardoso, and M. V. B. Zanoni, “Bisphenol A removal from wastewater using self-organized TiO2 nanotubular array electrodes,” Chemosphere, vol. 78, no. 5, pp. 569–575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Hepel and S. Hazelton, “Photoelectrocatalytic degradation of diazo dyes on nanostructured WO3 electrodes,” Electrochimica Acta, vol. 50, no. 25-26, pp. 5278–5291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Luo and M. Hepel, “Photoelectrochemical degradation of naphthol blue black diazo dye on WO3 film electrode,” Electrochimica Acta, vol. 46, no. 19, pp. 2913–2922, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Hepel and J. Luo, “Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes,” Electrochimica Acta, vol. 47, no. 5, pp. 729–740, 2001. View at Publisher · View at Google Scholar · View at Scopus