Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 980595, 6 pages
http://dx.doi.org/10.1155/2012/980595
Research Article

Thickness Dependent on Photocatalytic Activity of Hematite Thin Films

Department of Earth Sciences, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan

Received 13 July 2011; Accepted 16 September 2011

Academic Editor: Shifu Chen

Copyright © 2012 Yen-Hua Chen and Kuo-Jui Tu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. A. Mekkawy, M. O. Ali, and A. M. El-Zawahry, “Toxic effect of synthetic and natural food dyes on renal and hepatic functions in rats,” Toxicology Letters, vol. 95, pp. 155–161, 1998. View at Google Scholar
  2. D. A. Oxspring, G. McMullan, W. F. Smyth, and R. Marchant, “Decolourisation and metabolism of the reactive textile dye, Remazol Black B, by an immobilized microbial consortium,” Biotechnology Letters, vol. 18, no. 5, pp. 527–530, 1996. View at Google Scholar · View at Scopus
  3. S. R. Couto, “Decolouration of industrial azo dyes by crude laccase from Trametes hirsuta,” Journal of Hazardous Materials, vol. 148, no. 3, pp. 768–770, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. G. S. Nyanhongo, S. R. Couto, and G. M. Guebitz, “Coupling of 2,4,6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta,” Chemosphere, vol. 64, no. 3, pp. 359–370, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. B. Mishra, E. A. Haack, P. A. Maurice, and B. A. Bunker, “A spectroscopic study of the effects of a microbial siderophore on Pb adsorption to kaolinite,” Chemical Geology, vol. 275, no. 3-4, pp. 199–207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Hu, I. M. C. Lo, and G. Chen, “Performance and mechanism of chromate (VI) adsorption by δ-FeOOH-coated maghemite (γ-Fe2O3) nanoparticles,” Separation and Purification Technology, vol. 58, no. 1, pp. 76–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Yang, X. Wang, L. Zhu, and B. Xing, “Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes,” Environmental Science and Technology, vol. 40, no. 18, pp. 5804–5810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. W. M. Ip, J. P. Barford, and G. McKay, “Production and comparison of high surface area bamboo derived active carbons,” Bioresource Technology, vol. 99, no. 18, pp. 8909–8916, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. E. Nemr, O. Abdelwahab, A. El-Sikaily, and A. Khaled, “Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel,” Journal of Hazardous Materials, vol. 161, no. 1, pp. 102–110, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. S. Ahuja and T. R. N. Kutty, “Nanoparticles of SrTiO3 prepared by gel to crystallite conversion and their photocatalytic activity in the mineralization of phenol,” Journal of Photochemistry and Photobiology A, vol. 97, no. 1-2, pp. 99–107, 1996. View at Google Scholar
  11. D. L. Liao and B. Q. Liao, “Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants,” Journal of Photochemistry and Photobiology A, vol. 187, no. 2-3, pp. 363–369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Vaidyanathan, K. R. Ryan, and E. W. Eduardo, “Synthesis and UV-visible-light photoactivity of noble-metal-SrTiO3 composites,” Industrial and Engineering Chemistry Research, vol. 45, no. 7, pp. 2187–2193, 2006. View at Google Scholar
  13. Y. Zhang, J. C. Crittenden, D. W. Hand, and D. L. Perram, “Fixed-bed photocatalysts for solar decontamination of water,” Environmental Science and Technology, vol. 28, no. 3, pp. 435–442, 1994. View at Google Scholar
  14. L. Chang, J. B. Liu, J. S. Wang, and W. X. Zhang, “Synthesis and photocatalytic activity of visible-light-sensitive Fe doped TiO2 hollow microspheres,” Chinese Journal of Inorganic Chemistry, vol. 26, no. 5, pp. 744–748, 2010. View at Google Scholar
  15. J. Wang, Z. Wang, H. Li, Y. Cui, and Y. Du, “Visible light-driven nitrogen doped TiO2 nanoarray films: preparation and photocatalytic activity,” Journal of Alloys and Compounds, vol. 494, no. 1-2, pp. 372–377, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Takei, R. Haramoto, Q. Dong et al., “Photocatalytic activities of various pentavalent bismuthates under visible light irradiation,” Journal of Solid State Chemistry, vol. 184, no. 8, pp. 2017–2022, 2011. View at Publisher · View at Google Scholar
  17. Y. Yang, Q. Wu, Y. Guo, C. Hu, and E. Wang, “Efficient degradation of dye pollutants on nanoporous polyoxotungstate- anatase composite under visible-light irradiation,” Journal of Molecular Catalysis A, vol. 225, no. 2, pp. 203–212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. H. Priya and G. Madras, “Kinetics of photocatalytic degradation of phenols with multiple substituent groups,” Journal of Photochemistry and Photobiology A, vol. 179, no. 3, pp. 256–262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Jacob, T. Roch, F. S. Razavi, G. M. Gross, and H. U. Habermeier, “The thickness dependence of the effect of pressures on magnetic and electronic properties of thin films of La2/3Ca1/3MnO3,” Journal of Applied Physics, vol. 91, no. 4, pp. 2232–2235, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Islam, Y. Yamamoto, and H. Hori, “Thickness-dependent coercivity and magnetization process of Co/GaAs (100),” Journal of Magnetism and Magnetic Materials, vol. 310, no. 2, pp. 2234–2236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. N. Goyal, D. Kaur, and A. K. Pandey, “Growth and characterization of iron oxide nanocrystalline thin films via low-cost ultrasonic spray pyrolysis,” Materials Chemistry and Physics, vol. 116, no. 2-3, pp. 638–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Bao, X. Yao, N. Wakiya, K. Shinozaki, and N. Mizutani, “Band-gap energies of sol-gel-derived SrTiO3 thin films,” Applied Physics Letters, vol. 79, no. 23, pp. 3767–3769, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. E. L. Miller, D. Paluselli, B. Marsen, and R. E. Rocheleau, “Low-temperature reactively sputtered iron oxide for thin film devices,” Thin Solid Films, vol. 466, no. 1-2, pp. 307–313, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. H. S. Lee, C. S. Woo, B. K. Youn et al., “Bandgap modulation of TiO2 and its effect on the activity in photocatalytic oxidation of 2-isopropyl-6-methyl-4-pyrimidinol,” Topics in Catalysis, vol. 35, no. 3-4, pp. 255–260, 2005. View at Google Scholar
  25. A. U. Ubale, D. M. Choudhari, J. S. Kantale et al., “Synthesis of nanostructured CuxS thin films by chemical route at room temperature and investigation of their size dependent physical properties,” Journal of Alloys and Compounds, vol. 509, no. 37, pp. 9249–9254, 2011. View at Publisher · View at Google Scholar
  26. M. H. Khedr, K. S. Abdel Halim, and N. K. Soliman, “Synthesis and photocatalytic activity of nano-sized iron oxides,” Materials Letters, vol. 63, no. 6-7, pp. 598–601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Bandara, U. Klehm, and J. Kiwi, “Raschig rings-Fe2O3 composite photocatalyst activate in the degradation of 4-chlorophenol and Orange II under daylight irradiation,” Applied Catalysis B, vol. 76, no. 1-2, pp. 73–81, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Sánchez Mora, E. Gómez Barojas, E. R. Rojas, and R. Silva González, “Morphological, optical and photocatalytic properties of TiO2-Fe2O3 multilayers,” Solar Energy Materials and Solar Cells, vol. 91, no. 15-16, pp. 1412–1415, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Kawahara, K. I. Yamada, and H. Tada, “Visible light photocatalytic decomposition of 2-naphthol by anodic-biased α-Fe2O3 film,” Journal of Colloid and Interface Science, vol. 294, no. 2, pp. 504–507, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. H. G. Cha, C. W. Kim, Y. H. Kim et al., “Preparation and characterization of α-Fe2O3 nanorod-thin film by metal-organic chemical vapor deposition,” Thin Solid Films, vol. 517, no. 5, pp. 1853–1856, 2009. View at Publisher · View at Google Scholar · View at Scopus