Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 109843, 8 pages
http://dx.doi.org/10.1155/2013/109843
Research Article

DFT/TDDFT and Experimental Studies of Natural Pigments Extracted from Black Tea Waste for DSSC Application

Applied Physics Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam

Received 21 May 2013; Revised 9 August 2013; Accepted 11 August 2013

Academic Editor: Vincenzo Augugliaro

Copyright © 2013 N. T. R. N. Kumara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe, P. M. Sirimanne, and K. G. U. Wijayantha, “Efficient photosensitization of nanocrystalline TiO2 films by tannins and related phenolic substances,” Journal of Photochemistry and Photobiology A, vol. 94, no. 2-3, pp. 217–220, 1996. View at Google Scholar · View at Scopus
  2. G. Calogero, G. Di Marco, S. Cazzanti et al., “Efficient dye-sensitized solar cells using red turnip and purple wild Sicilian prickly pear fruits,” International Journal of Molecular Sciences, vol. 11, no. 1, pp. 254–267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. S. Polo and N. Y. Murakami Iha, “Blue sensitizers for solar cells: natural dyes from calafate and jaboticaba,” Solar Energy Materials and Solar Cells, vol. 90, no. 13, pp. 1936–1944, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595–6663, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. S. Polo, M. K. Itokazu, and N. Y. Murakami Iha, “Metal complex sensitizers in dye-sensitized solar cells,” Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1343–1361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. G. P. Smestad and M. Grätzel, “Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter,” Journal of Chemical Education, vol. 75, no. 6, pp. 752–756, 1998. View at Google Scholar · View at Scopus
  7. G. K. R. Senadeera, T. Kitamura, Y. Wada, and S. Yanagida, “Photosensitization of nanocrystalline TiO2 films by a polymer with two carboxylic groups, poly (3-thiophenemalonic acid),” Solar Energy Materials and Solar Cells, vol. 88, no. 3, pp. 315–322, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Calogero, J.-H. Yum, A. Sinopoli, G. Di Marco, M. Grätzel, and M. K. Nazeeruddin, “Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells,” Solar Energy, vol. 86, no. 5, pp. 1563–1575, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Shahid, Shahid-ul-Islam, and F. Mohammad, “Recent advancements in natural dye applications: a review,” Journal of Cleaner Production, vol. 53, pp. 310–331, 2013. View at Google Scholar
  10. A. Gramza-Michalowska and J. Korczak, “Polyphenols-potential food improvement factor,” American Journal of Food Technology, vol. 2, no. 7, pp. 662–670, 2007. View at Google Scholar · View at Scopus
  11. C. J. Dufresne and E. R. Farnworth, “A review of latest research findings on the health promotion properties of tea,” Journal of Nutritional Biochemistry, vol. 12, no. 7, pp. 404–421, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. S. V. Jovanovic, Y. Hara, S. Steenken, and M. G. Simic, “Antioxidant potential of theaflavins. A Pulse Radiolysis Study,” Journal of the American Chemical Society, vol. 119, no. 23, pp. 5337–5343, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Liang and Y. Xu, “Effect of extraction temperature on cream and extractability of black tea [Camellia sinensis (L.) O. Kuntze],” International Journal of Food Science and Technology, vol. 38, no. 1, pp. 37–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. P. K. Mahanta and H. K. Baruah, “Theaflavin pigment formation and polyphenol activity as criteria of fermentation in orthodox and CTC teas,” Journal of Agricultural and Food Chemistry, vol. 40, no. 5, pp. 860–863, 1992. View at Google Scholar · View at Scopus
  15. Y. Liang and Y. Xu, “Effect of pH on cream particle formation and solids extraction yield of black tea,” Food Chemistry, vol. 74, no. 2, pp. 155–160, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. M. R. Narayan, “Review: dye sensitized solar cells based on natural photosensitizers,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 208–215, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Hara and H. Arakawa, “Dye-sensitized Solar Cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, Eds., John Wiley & Sons, West Sessex, UK, 2003. View at Google Scholar
  18. N. T. R. N. Kumara, P. Ekanayake, A. Lim, M. Iskandar, and L. C. Ming, “Study of the enhancement of cell performance of dye sensitized solar cells sensitized with nephelium lappaceum (F: Sapindaceae),” Journal of Solar Energy Engineering, vol. 135, no. 3, Article ID 031014, 2013. View at Google Scholar
  19. N. T. R. N. Kumara, P. Ekanayake, A. Lim et al., “Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells,” Journal of Alloys and Compounds, vol. 581, pp. 186–191, 2013. View at Google Scholar
  20. B. Deppmeier, A. Driessen, T. Hehre et al., “Spartan'10,” Wavefunction, 2011.
  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., “Gaussian 09,” Revision C.01, Gaussian, Wallingford, Conn, USA, 2010.
  22. R. Dennington, T. Keith, and J. Millam, “GaussView,” Version 5, Semichem, Shawnee Mission, Kan, USA, 2009.
  23. S. Scharbert, N. Holzmann, and T. Hofmann, “Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse,” Journal of Agricultural and Food Chemistry, vol. 52, no. 11, pp. 3498–3508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Misra, P. Kumar, R. Srivastava, S. K. Dhawan, M. N. Kamalasanan, and S. Chandra, “Electrochemical and optical studies of conjugated polymers for three primary colours,” Indian Journal of Pure and Applied Physics, vol. 43, no. 12, pp. 921–925, 2005. View at Google Scholar · View at Scopus
  25. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Physica Status Solidi B, vol. 15, no. 2, pp. 627–637, 1966. View at Google Scholar
  26. F. N. Crespilho, V. Zucolotto, J. R. Siqueira, A. J. F. Carvalho, C. N. Francisco, and O. N. Oliveira, “Using electrochemical data to obtain energy diagrams for layer-by-layer films from metallic phthalocyanines,” International Journal of Electrochemical Science, vol. 1, pp. 151–159, 2006. View at Google Scholar
  27. G. P. Smestad, S. Spiekermann, J. Kowalik et al., “A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices,” Solar Energy Materials and Solar Cells, vol. 76, no. 1, pp. 85–105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Tian, X. Yang, J. Cong et al., “Effect of different electron donating groups on the performance of dye-sensitized solar cells,” Dyes and Pigments, vol. 84, no. 1, pp. 62–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. T. R. Heera and L. Cindrella, “Molecular orbital evaluation of charge flow dynamics in natural pigments based photosensitizers,” Journal of Molecular Modeling, vol. 16, no. 3, pp. 523–533, 2010. View at Publisher · View at Google Scholar · View at Scopus