Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 172010, 10 pages
http://dx.doi.org/10.1155/2013/172010
Research Article

Power Generation Enhancement by Utilizing Plant Photosynthate in Microbial Fuel Cell Coupled Constructed Wetland System

1School of Energy and Environment, Southeast University, Nanjing 210096, China
2School of Public Health, Southeast University, Nanjing 210096, China

Received 27 June 2013; Accepted 31 August 2013

Academic Editor: Manickavachagam Muruganandham

Copyright © 2013 Shentan Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. E. Logan and J. M. Regan, “Electricity-producing bacterial communities in microbial fuel cells,” Trends in Microbiology, vol. 14, no. 12, pp. 512–518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Du, H. Li, and T. Gu, “A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy,” Biotechnology Advances, vol. 25, no. 5, pp. 464–482, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. D. R. Lovley, “The microbe electric: conversion of organic matter to electricity,” Current Opinion in Biotechnology, vol. 19, no. 6, pp. 564–571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Liu, S. Cheng, L. Huang, and B. E. Logan, “Scale-up of membrane-free single-chamber microbial fuel cells,” Journal of Power Sources, vol. 179, no. 1, pp. 274–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. R. Kim, G. C. Premier, F. R. Hawkes, R. M. Dinsdale, and A. J. Guwy, “Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode,” Journal of Power Sources, vol. 187, no. 2, pp. 393–399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Logan, S. Cheng, V. Watson, and G. Estadt, “Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells,” Environmental Science and Technology, vol. 41, no. 9, pp. 3341–3346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Martin, B. Tartakovsky, and O. Savadogo, “Cathode materials evaluation in microbial fuel cells: a comparison of carbon, Mn2O3, Fe2O3 and platinum materials,” Electrochimica Acta, vol. 58, no. 1, pp. 58–66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Ci, Z. Wen, J. Chen, and Z. He, “Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells,” Electrochemistry Communications, vol. 14, no. 1, pp. 71–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. P. S. Jana, M. Behera, and M. M. Ghangrekar, “Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder,” International Journal of Hydrogen Energy, vol. 35, no. 11, pp. 5681–5686, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Rahimnejad, M. Ghasemi, G. D. Najafpour et al., “Synthesis, characterization and application studies of self-made Fe3O4/PES nanocomposite membranes in microbial fuel cell,” Electrochimica Acta, vol. 85, pp. 700–706, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. He, J. Kan, F. Mansfeld, L. T. Angenent, and K. H. Nealson, “Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria,” Environmental Science and Technology, vol. 43, no. 5, pp. 1648–1654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Nishio, K. Hashimoto, and K. Watanabe, “Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor,” Applied Microbiology and Biotechnology, vol. 86, no. 3, pp. 957–964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. Timmers, D. P. B. T. B. Strik, H. V. M. Hamelers, and C. J. N. Buisman, “Long-term performance of a plant microbial fuel cell with Spartina anglica,” Applied Microbiology and Biotechnology, vol. 86, no. 3, pp. 973–981, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Xiao, E. B. Young, J. A. Berges, and Z. He, “Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production,” Environmental Science and Technology, vol. 46, no. 20, pp. 11459–11466, 2012. View at Publisher · View at Google Scholar
  15. M. Rosenbaum, Z. He, and L. T. Angenent, “Light energy to bioelectricity: photosynthetic microbial fuel cells,” Current Opinion in Biotechnology, vol. 21, no. 3, pp. 259–264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. P. Ciria, M. L. Solano, and P. Soriano, “Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel,” Biosystems Engineering, vol. 92, no. 4, pp. 535–544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Li, H. Song, W. Xiang, and L. Wu, “Electricity generation during wastewater treatment by a microbial fuel cell coupled with constructed wetland,” Journal of Southeast University, vol. 28, no. 2, pp. 175–178, 2012. View at Google Scholar
  18. A. K. Yadav, P. Dash, A. Mohanty, R. Abbassi, and B. K. Mishra, “Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal,” Ecological Engineering, vol. 47, no. 0, pp. 126–131, 2012. View at Publisher · View at Google Scholar
  19. Z. Chen, Y. Huang, J. Liang, F. Zhao, and Y. Zhu, “A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere,” Bioresource Technology, vol. 108, pp. 55–59, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Wang, V. Baldy, C. Périssol, and N. Korboulewsky, “Influence of plants on microbial activity in a vertical-downflow wetland system treating waste activated sludge with high organic matter concentrations,” Journal of Environmental Management, vol. 95, supplement, pp. S158–S164, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Zhang, Q. Zhao, Y. Jiao et al., “Improved performance of microbial fuel cell using combination biocathode of graphite fiber brush and graphite granules,” Journal of Power Sources, vol. 196, no. 15, pp. 6036–6041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Zhang, K. Wang, Q. Zhao, Y. Jiao, and D. Lee, “Effect of cathode types on long-term performance and anode bacterial communities in microbial fuel cells,” Bioresource Technology, vol. 118, pp. 249–256, 2012. View at Publisher · View at Google Scholar
  23. H. Richter, M. Lanthier, K. P. Nevin, and D. R. Lovley, “Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes,” Applied and Environmental Microbiology, vol. 73, no. 16, pp. 5347–5353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Manz, R. Amann, W. Ludwig, M. Wagner, and K. Schleifer, “Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions,” Systematic and Applied Microbiology, vol. 15, no. 4, pp. 593–600, 1992. View at Google Scholar · View at Scopus
  25. B. E. Logan, B. Hamelers, R. Rozendal et al., “Microbial fuel cells: methodology and technology,” Environmental Science and Technology, vol. 40, no. 17, pp. 5181–5192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. V. Raghavulu, S. V. Mohan, R. K. Goud, and P. N. Sarma, “Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes,” Electrochemistry Communications, vol. 11, no. 2, pp. 371–375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Wei, P. Liang, X. X. Cao, and X. Huang, “A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint,” Environmental Science and Technology, vol. 44, no. 8, pp. 3187–3191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. A. Timmers, M. Rothballer, D. P. B. T. B. Strik et al., “Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell,” Applied Microbiology and Biotechnology, vol. 94, no. 2, pp. 537–548, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Deng, Z. Chen, and F. Zhao, “Energy from plants and microorganisms: progress in plant-microbial fuel cells,” ChemSusChem, vol. 5, no. 6, pp. 1006–1011, 2012. View at Publisher · View at Google Scholar
  30. C. Fang, B. Min, and I. Angelidaki, “Nitrate as an oxidant in the cathode chamber of a microbial fuel cell for both power generation and nutrient removal purposes,” Applied Biochemistry and Biotechnology, vol. 164, no. 4, pp. 464–474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Puig, M. Serra, A. Vilar-Sanz et al., “Autotrophic nitrite removal in the cathode of microbial fuel cells,” Bioresource Technology, vol. 102, no. 6, pp. 4462–4467, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Zhang and I. Angelidaki, “Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes,” Water Research, vol. 46, no. 19, pp. 6445–6453, 2012. View at Publisher · View at Google Scholar
  33. B. Min, J. Kim, S. Oh, J. M. Regan, and B. E. Logan, “Electricity generation from swine wastewater using microbial fuel cells,” Water Research, vol. 39, no. 20, pp. 4961–4968, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. R. Kim, Y. Zuo, J. M. Regan, and B. E. Logan, “Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater,” Biotechnology and Bioengineering, vol. 99, no. 5, pp. 1120–1127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Zhou, G. Wang, and F. Yang, “Characteristics of growth, nutrient uptake, purification effect of Ipomoea aquatica, Lolium multiflorum, and Sorghum sudanense grown under different nitrogen levels,” Desalination, vol. 273, no. 2-3, pp. 366–374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Yao, G. Shen, X. Li, H. Li, H. Hu, and W. Ni, “A comparative study on the potential of oxygen release by roots of selected wetland plants,” Physics and Chemistry of the Earth, vol. 36, no. 9–11, pp. 475–478, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Dong, W. Zhu, Y. Q. Zhao, and M. Gao, “Diurnal fluctuations in root oxygen release rate and dissolved oxygen budget in wetland mesocosm,” Desalination, vol. 272, no. 1–3, pp. 254–258, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Wu, J. Zhang, W. Jia et al., “Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater,” Bioresource Technology, vol. 100, no. 12, pp. 2910–2917, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Kaku, N. Yonezawa, Y. Kodama, and K. Watanabe, “Plant/microbe cooperation for electricity generation in a rice paddy field,” Applied Microbiology and Biotechnology, vol. 79, no. 1, pp. 43–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Bombelli, D. Iyer, S. Covshoff et al., “Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems,” Applied Microbiology and Biotechnology, vol. 97, no. 1, pp. 429–438, 2013. View at Publisher · View at Google Scholar
  41. K. Takanezawa, K. Nishio, S. Kato, K. Hashimoto, and K. Watanabe, “Factors affecting electric output from rice-paddy microbial fuel cells,” Bioscience, Biotechnology and Biochemistry, vol. 74, no. 6, pp. 1271–1273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Helder, D. P. B. T. B. Strik, H. V. M. Hamelers, A. J. Kuhn, C. Blok, and C. J. N. Buisman, “Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax,” Bioresource Technology, vol. 101, no. 10, pp. 3541–3547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Hubenova and M. Mitov, “Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell,” Bioelectrochemistry, vol. 87, pp. 185–191, 2012. View at Publisher · View at Google Scholar · View at Scopus