Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 472086, 6 pages
http://dx.doi.org/10.1155/2013/472086
Research Article

Performance Evaluation of DSC Windows for Buildings

1Department of Architectural Engineering, Kongju National University, 275 Budae-Dong, Cheonan, Chungnam 330-717, Republic of Korea
2Green Home Energy Technology Research Center, Kongju National University, 275 Budae-Dong, Cheonan, Chungnam 330-717, Republic of Korea

Received 25 March 2013; Revised 1 July 2013; Accepted 23 July 2013

Academic Editor: Georgios Tzamalis

Copyright © 2013 Jun-Gu Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y.-J. Shin, S. K. Ki, N.-G. Park, S. R. Kwang, and H. C. Soon, “Enhancement of photovoltaic properties of Ti-modified nanocrystalline ZnO electrode for dye-sensitized solar cell,” Bulletin of the Korean Chemical Society, vol. 26, no. 12, pp. 1929–1930, 2005. View at Google Scholar · View at Scopus
  2. S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree et al., “Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 145–151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, “Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells,” Journal of Physical Chemistry B, vol. 107, no. 33, pp. 8607–8611, 2003. View at Google Scholar · View at Scopus
  4. J.-Y. Choi, I.-G. Lee, J.-T. Hong, M.-J. Kim, W.-Y. Kim, and H.-J. Kim, “The new design of a large area dye-sensitized solar cell with Ag grid for improving a design characteristics,” Transactions of the Korean Institute of Electrical Engineers, vol. 56, no. 1, pp. 123–127, 2007. View at Google Scholar · View at Scopus
  5. A. Hinsch, H. Brandt, W. Veurman et al., “Dye solar modules for facade applications: recent results from project ColorSol,” Solar Energy Materials and Solar Cells, vol. 93, no. 6-7, pp. 820–824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Yoon, S. Tak, J. Kim, Y. Jun, K. Kang, and J. Park, “Application of transparent dye-sensitized solar cells to building integrated photovoltaic systems,” Building and Environment, vol. 46, no. 10, pp. 1899–1904, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Miyazaki, A. Akisawa, and T. Kashiwagi, “Energy savings of office buildings by the use of semi-transparent solar cells for windows,” Renewable Energy, vol. 30, no. 3, pp. 281–304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Lynn, L. Mohanty, and S. Wittkopf, “Color rendering properties of semi-transparent thin-film PV modules,” Building and Environment, vol. 54, pp. 148–158, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Mitchell, C. Kohler, L. Zhu, and D. Arasteh, WINDOW 6. 3 NFRC Simulation Manual, Regents of the University of California, 2011.
  10. ISO and ISO 15099, Thermal Performance of Windows, Doors and Shading Devices-Detailed Calculation, International Organization for Standardization, Geneva, Switzerland, 2003.