Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 480634, 6 pages
http://dx.doi.org/10.1155/2013/480634
Research Article

Numerical Simulation of Luminescent Downshifting in Top Cell of Monolithic Tandem Solar Cells

1UDES, Solar Equipment Development Unit/EPST CDER, RN11 Bou-Ismail BP. 386, 42415 Tipaza, Algeria
2L.I.S Laboratory, Department of Electronic, Faculty of Technology, Ferhat Abbas University, 19000 Setif, Algeria

Received 20 May 2013; Revised 8 July 2013; Accepted 10 July 2013

Academic Editor: Gaetano Di Marco

Copyright © 2013 Mahfoud Abderrezek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, Hoboken, NJ, USA, 2003.
  2. P. J. Faine, R. Sarah Kurtz, and J. M. Olson, “Modeling of two-junction, series-connected tandem solar cells using top-cell and coating thicknesses as adjustable parameters,” in Proceedings of the 21st IEEE Photovoltaics Specialists Conference (PVSC '90), Kissimmee, Fla, USA, 1990.
  3. J. M. Olson, S. R. Kurtz, A. E. Kibbler, and P. Faine, “A 27.3% efficient Ga0.5In0.5P/GaAs tandem solar cell,” Applied Physics Letters, vol. 56, no. 7, pp. 623–625, 1990. View at Publisher · View at Google Scholar · View at Scopus
  4. S. R. Kurtz, P. Faine, and J. M. Olson, “Modeling of two-junction, series-connected tandem solar cells using top-cell thickness as an adjustable parameter,” Journal of Applied Physics, vol. 68, no. 4, pp. 1890–1895, 1990. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Ross, E. Klampaftis, J. Fritsche, M. Bauer, and B. S. Richards, “Increased short-circuit current density of production line CdTe mini-module through luminescent down-shifting,” Solar Energy Materials and Solar Cells, vol. 103, pp. 11–16, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1182–1194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Danos, T. Parel, T. Markvart, V. Barrioz, W. S. M. Brooks, and S. J. C. Irvine, “Increased efficiencies on CdTe solar cells via luminescence down-shifting with excitation energy transfer between dyes,” Solar Energy Materials and Solar Cells, vol. 98, pp. 486–490, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Solar Energy Materials, vol. 2, no. 1, pp. 19–29, 1979. View at Google Scholar · View at Scopus
  9. ASTM-Standard-G173-2003e1, “Standard TABLEs for Reference solar spectral irradiances: Direct normal and hemispherical on 37 degree tilted surface,” Conshohocken, Pa, USA, 2003.
  10. A. Vesselinka Petrova-Koch and R. Hezel Adolf Goetzberger, High-Efficient Low-Cost Photovoltaics Recent Developments, Springer, Berlin, Germany, 2009.
  11. B. S. Richard and A. Shalav, “The role of polymers in the luminescence conversion of sunlight for enhanced solar cell performance,” Synthetic Metals, vol. 154, no. 1–3, pp. 61–64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. K. R. McIntosh, G. Lau, J. N. Cotsell et al., “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Progress in Photovoltaics, vol. 17, no. 3, pp. 191–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. “BASF Lumogen F datasheets,” http://www2.basf.us/additives/pdfs/lumvio570.pdf, http://www2.basf.us/additives/pdfs/lumyel083.pdf.
  14. B. S. Richards and K. R. McIntosh, “Increased mc-Si module efficiency using fluorescent organic dyes: a ray-tracing study,” in IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, Hawaii, USA, May 2006.
  15. K. J. Singh and S. K. Sarkar, “Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling using optimized InAlGaP BSF layers,” Optical and Quantum Electronics, vol. 43, pp. 1–21, 2011. View at Publisher · View at Google Scholar
  16. A. S. Gudovskikh, N. A. Kaluzhniy, V. M. Lantratov, S. A. Mintairov, M. Z. Shvarts, and V. M. Andreev, “Numerical modelling of GaInP solar cells with AlInP and AlGaAs windows,” Thin Solid Films, vol. 516, no. 20, pp. 6739–6743, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Ikeda and M. Kaneko, “Estimation of the composition parameter of electrochemically colored amorphous hydrogen tungsten oxide films,” Journal of Applied Physics, vol. 66, Article ID 5285, 6 pages, 1989. View at Publisher · View at Google Scholar
  18. M. Y. Ghannam, A. S. Alomar, N. Posthuma, G. Flammad, and J. Poorthmans, “Optimization of the triple junction In0.5Ga0.5P/GaAs/Ge monolithic tandem cell aimed for terrestrial applications using an experimentally verified analytical model,” Kuwait Journal of Science and Engineering, vol. 31, pp. 203–234, 2004. View at Google Scholar
  19. L. Guijiang, W. Jyhchiarng, and H. Meichun, “Theoretical modeling of the interface recombination effect on the performance of III-V tandem solar cells,” Journal of Semiconductors, vol. 31, no. 8, Article ID 082004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors-Numerical Data And Graphical Information, Springer, New York, NY, USA, 1999.
  21. T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, “High efficiency InGaP solar cells for InGaP/GaAs tandem cell application,” in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, pp. 1729–1732, Waikoloa, Hawaii, USA, December 1994.
  22. A. Niemegeers and M. Burgelman, “Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells,” Journal of Applied Physics, vol. 81, Article ID 2881, 1997. View at Publisher · View at Google Scholar
  23. L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Applied Optics, vol. 48, no. 2, pp. 212–220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. G. J. H. M. van Sark, “Simulating performance of solar cells with spectral downshifting layers,” Thin Solid Films, vol. 516, no. 20, pp. 6808–6812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. W. G. J. H. M. Van Sark, A. Meijerink, R. E. I. Schropp, J. A. M. Van Roosmalen, and E. H. Lysen, “Enhancing solar cell efficiency by using spectral converters,” Solar Energy Materials and Solar Cells, vol. 87, no. 1–4, pp. 395–409, 2005. View at Publisher · View at Google Scholar · View at Scopus