Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 484831, 9 pages
http://dx.doi.org/10.1155/2013/484831
Research Article

Kinetics Study of Photocatalytic Activity of Flame-Made Unloaded and Fe-Loaded CeO2 Nanoparticles

1Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
2Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
3Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Received 8 June 2013; Accepted 4 October 2013

Academic Editor: Jiaguo Yu

Copyright © 2013 D. Channei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Unloaded CeO2 and nominal 0.50, 1.00, 1.50, 2.00, 5.00, and 10.00 mol% Fe-loaded CeO2 nanoparticles were synthesized by flame spray pyrolysis (FSP). The samples were characterized to obtain structure-activity relation by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Brunauer, Emmett, and Teller (BET) nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), and UV-visible diffuse reflectance spectrophotometry (UV-vis DRS). XRD results indicated that phase structures of Fe-loaded CeO2 nanoparticles were the mixture of CeO2 and Fe2O3 phases at high iron loading concentrations. HRTEM images showed the significant change in morphology from cubic to almost-spherical shape observed at high iron loading concentration. Increased specific surface area with increasing iron content was also observed. The results from UV-visible reflectance spectra clearly showed the shift of absorption edge towards longer visible region upon loading CeO2 with iron. Photocatalytic studies showed that Fe-loaded CeO2 sample exhibited higher activity than unloaded CeO2, with optimal 2.00 mol% of iron loading concentration being the most active catalyst. Results from XPS analysis suggested that iron in the Fe3+ state might be an active species responsible for enhanced photocatalytic activities observed in this study.