Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 507194, 8 pages
http://dx.doi.org/10.1155/2013/507194
Research Article

The Influence of the Ammonolysis Temperature on the Photocatalytic Activity of β-TaON

1Laboratory for Solid State Chemistry and Catalysis, Empa—Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland
2Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland

Received 28 November 2012; Accepted 31 January 2013

Academic Editor: Lukas Schmidt-Mende

Copyright © 2013 Songhak Yoon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Nozik and J. Miller, “Introduction to solar photon conversion,” Chemical Reviews, vol. 110, no. 11, pp. 6443–6445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chemical Society Reviews, vol. 38, no. 1, pp. 253–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Khaselev and J. A. Turner, “A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting,” Science, vol. 280, no. 5362, pp. 425–427, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. M. G. Walter, E. L. Warren, J. R. McKone et al., “Solar water splitting cells,” Chemical Reviews, vol. 110, no. 11, pp. 6446–6473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. Bard and M. A. Fox, “Artificial photosynthesis: solar splitting of water to hydrogen and oxygen,” Accounts of Chemical Research, vol. 28, no. 3, pp. 141–145, 1995. View at Google Scholar · View at Scopus
  6. A. J. Bard, G. M. Whitesides, R. N. Zare, and F. W. Mclafferty, “Holy grails in chemistry,” Accounts of Chemical Research, vol. 28, no. 3, pp. 91–91, 1995. View at Google Scholar
  7. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. C. Hanna and A. J. Nozik, “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” Journal of Applied Physics, vol. 100, no. 7, Article ID 074510, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Google Scholar · View at Scopus
  11. C. Le Paven-Thivet, A. Ishikawa, A. Ziani et al., “Photoelectrochemical properties of crystalline perovskite lanthanum titanium oxynitride films under visible light,” Journal of Physical Chemistry C, vol. 113, no. 15, pp. 6156–6162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Abe, M. Higashi, and K. Domen, “Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation,” Journal of the American Chemical Society, vol. 132, no. 34, pp. 11828–11829, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Maeda, K. Teramura, D. Lu et al., “Photocatalyst releasing hydrogen from water,” Nature, vol. 440, no. 7082, p. 295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, “An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm),” Chemical Communications, no. 16, pp. 1698–1699, 2002. View at Google Scholar · View at Scopus
  16. M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, and K. Domen, “Ta3N5 and TaON as novel photocatalysts responding to visible light,” Studies in Surface Science and Catalysis, vol. 145, pp. 169–172, 2002. View at Google Scholar · View at Scopus
  17. S. Ito, K. R. Thampi, P. Comte, P. Liska, and M. Grätzel, “Highly active meso-microporous TaON photocatalyst driven by visible light,” Chemical Communications, no. 2, pp. 268–270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Kasahara, K. Nukumizu, G. Hitoki et al., “Photoreactions on LaTiO2N under visible light irradiation,” Journal of Physical Chemistry A, vol. 106, no. 29, pp. 6750–6753, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Maeda and K. Domen, “New non-oxide photocatalysts designed for overall water splitting under visible light,” Journal of Physical Chemistry C, vol. 111, no. 22, pp. 7851–7861, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Chun, A. Ishikawa, H. Fujisawa et al., “Conduction and valence band positions of Ta2O5, TaOn, and Ta3N5 by UPS and electrochemical methods,” Journal of Physical Chemistry B, vol. 107, no. 8, pp. 1798–1803, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Hara, T. Takata, J. N. Kondo, and K. Domen, “Photocatalytic reduction of water by TaON under visible light irradiation,” Catalysis Today, vol. 90, no. 3-4, pp. 313–317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Brauer and J. R. Weidlein, “Synthesis and properties of tantalum oxide nitride TaON,” Angewandte Chemie International Edition, vol. 4, no. 10, p. 875, 1965. View at Google Scholar
  23. J. H. Swisher and M. H. Read, “Thermodynamic properties and electrical conductivity of Ta3N5 and TaON,” Metallurgical Transactions, vol. 3, no. 2, pp. 489–494, 1972. View at Google Scholar · View at Scopus
  24. D. Armytage and B. E. F. Fender, “Anion ordering in TaON-powder neutron-diffraction investigation,” Acta Crystallographica Section B, vol. 30, no. 3, pp. 809–812, 1974. View at Google Scholar
  25. M. Weishauptand and J. Strahle, “Preparation of oxide nitrides VON, NbON, and TaON-crystal-structure of NbON and TaON,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 429, no. 1, pp. 261–269, 1977. View at Google Scholar
  26. C. M. Fang, E. Orhan, G. A. de Wijs et al., “The electronic structure of tantalum (oxy)nitrides TaON and Ta3N5,” Journal of Materials Chemistry, vol. 11, no. 4, pp. 1248–1252, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Banerjee, S. K. Mohapatra, and M. Misra, “Synthesis of TaON nanotube arrays by sonoelectrochemical anodization followed by nitridation: a novel catalyst for photoelectrochemical hydrogen generation from water,” Chemical Communications, no. 46, pp. 7137–7139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. S. K. Ma, K. Maeda, and K. Domen, “Modification of TaON with ZrO2 to improve photocatalytic hydrogen evolution activity under visible light: influence of preparation conditions on activity,” Catalysis Science & Technology, vol. 2, no. 4, pp. 818–823, 2012. View at Publisher · View at Google Scholar
  29. J. Hou, Z. Wang, R. Cao, S. Jiao, and H. Zhu, “Preparation of polyaniline modified TaON with enhanced visible light photocatalytic activities,” Dalton Transactions, vol. 40, no. 16, pp. 4038–4041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, and K. Domen, “Surface modification of TaON with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light,” Bulletin of the Chemical Society of Japan, vol. 81, no. 8, pp. 927–937, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Maeda, R. Abe, and K. Domen, “Role and function of ruthenium species as promoters with TaON-based photocatalysts for oxygen evolution in two-step water splitting under visible light,” Journal of Physical Chemistry C, vol. 115, no. 7, pp. 3057–3064, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. Le Bail, Duroy, and Fourquet, “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Materials Research Bulletin, vol. 23, no. 3, pp. 447–452, 1988. View at Google Scholar · View at Scopus
  33. J. Rodríguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B, vol. 192, no. 1-2, pp. 55–69, 1993. View at Google Scholar · View at Scopus
  34. P. Scherrer, “Inteferenzen an regellos orientierten Teilchen im Rontgenlicht,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, vol. 2, pp. 98–100, 1918. View at Google Scholar
  35. P. Thompson, D. E. Cox, and J. B. Hastings, “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” Journal of Applied Crystallography, vol. 20, pp. 79–83, 1987. View at Google Scholar
  36. M. Yashima, Y. Lee, and K. Domen, “Crystal structure and electron density of tantalum oxynitride, a visible light responsive photocatalyst,” Chemistry of Materials, vol. 19, no. 3, pp. 588–593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Rachel, S. G. Ebbinghaus, M. Güngerich et al., “Tantalum and niobium perovskite oxynitrides: synthesis and analysis of the thermal behaviour,” Thermochimica Acta, vol. 438, no. 1-2, pp. 134–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Maegli, S. Yoon, E. Otal, L. Karvonen, P. Mandaliev, and A. Weidenkaff, “Perovskite-type SrTi1xNbx(O,N)3 compounds: synthesis, crystal structure and optical properties,” Journal of Solid State Chemistry, vol. 184, no. 4, pp. 929–936, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Logvinovich, L. Bocher, D. Sheptyakov et al., “Microstructure, surface composition and chemical stability of partly ordered LaTiO2N,” Solid State Sciences, vol. 11, no. 8, pp. 1513–1519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. Le Gendre, Marchand, and Laurent, “A new class of inorganic compounds containing dinitrogen-metal bonds,” Journal of the European Ceramic Society, vol. 17, no. 15-16, pp. 1813–1818, 1997. View at Google Scholar · View at Scopus
  41. D. Logvinovich, S. G. Ebbinghaus, A. Reller, I. Marozau, D. Ferri, and A. Weidenkaff, “Synthesis, crystal structure and optical properties of LaNbON2,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 636, no. 6, pp. 905–912, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. V. N. Kuznetsov and N. Serpone, “On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens analysis and assignments,” Journal of Physical Chemistry C, vol. 113, no. 34, pp. 15110–15123, 2009. View at Publisher · View at Google Scholar · View at Scopus