Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 612095, 8 pages
http://dx.doi.org/10.1155/2013/612095
Research Article

Nanostructured ZnO, TiO2, and Composite ZnO/TiO2 Films for Application in Dye-Sensitized Solar Cells

Energy and Environment Laboratory, Physics Department, University of Patras, 26500 Patras, Greece

Received 24 May 2013; Revised 28 June 2013; Accepted 29 June 2013

Academic Editor: Gaetano Di Marco

Copyright © 2013 Myrsini Giannouli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Gao, Y. Wang, J. Zhang et al., “A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell,” Chemical Communications, no. 23, pp. 2635–2637, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Grätzel and B. O'Regan, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Google Scholar · View at Scopus
  3. J. Navas, R. Alcántara, C. Fernández-Lorenzo, and J. Martín-Calleja, “Evaluation of decay photocurrent measurements in dye-sensitized solar cells: application to laser beam-induced current technique,” International Journal of Energy Research, vol. 36, no. 2, pp. 193–203, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Syrrokostas, M. Giannouli, and P. Yianoulis, “Effects of paste storage on the properties of nanostructured thin films for the development of dye-sensitized solar cells,” Renewable Energy, vol. 34, no. 7, pp. 1759–1764, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Giannouli and F. Spiliopoulou, “Effects of the morphology of nanostructured ZnO films on the efficiency of dye-sensitized solar cells,” Renewable Energy, vol. 41, pp. 115–122, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Birkel, Y. Lee, D. Koll et al., “Highly efficient and stable dye-sensitized solar cells based on SnO2 nanocrystals prepared by microwave-assisted synthesis,” Energy and Environmental Science, vol. 5, no. 1, pp. 5392–5400, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Guillén, F. Casanueva, J. Anta et al., “Photovoltaic performance of nanostructured zinc oxide sensitised with xanthene dyes,” Journal of Photochemistry and Photobiology A, vol. 200, no. 2-3, pp. 364–370, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Plank, I. Howard, A. Rao et al., “Efficient ZnO nanowire solid-state dye-sensitized solar cells using organic dyes and core-shell nanostructures,” Journal of Physical Chemistry C, vol. 113, no. 43, pp. 18515–18522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Pradhan, S. K. Batabyal, and A. J. Pal, “Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 91, no. 9, pp. 769–773, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Hao, J. Wu, Y. Huang, and J. Lin, “Natural dyes as photosensitizers for dye-sensitized solar cell,” Solar Energy, vol. 80, no. 2, pp. 209–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. M. Kroon, N. J. Bakker, H. Smit et al., “Nanocrystalline dye-sensitized solar cells having maximum performance,” Progress in Photovoltaics, vol. 15, no. 1, pp. 1–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Lee, H. Okada, A. Wakahara, and A. Yoshida, “Structural and photoelectrochemical characteristics of nanocrystalline ZnO electrode with Eosin-Y,” Ceramics International, vol. 32, no. 5, pp. 495–498, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Harikisun and H. Desilvestro, “Long-term stability of dye solar cells,” Solar Energy, vol. 85, no. 6, pp. 1179–1188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Nazeeruddin, E. Baranoff, and M. Grätzel, “Dye-sensitized solar cells: a brief overview,” Solar Energy, vol. 85, no. 6, pp. 1172–1178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Guchhait, A. Rath, and A. Pal, “Hybrid core-shell nanoparticles: photoinduced electron-transfer for charge separation and solar cell applications,” Chemistry of Materials, vol. 21, no. 21, pp. 5292–5299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Guchhait and A. Pal, “Correlation between photoinduced electron transfer and photovoltaic characteristics in solar cells based on hybrid core-shell nanoparticles,” Journal of Physical Chemistry, vol. 114, no. 45, pp. 19294–19298, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Giannouli, G. Syrrokostas, and P. Yianoulis, “Effects of using multi-component electrolytes on the stability and properties of solar cells sensitized with simple organic dyes,” Progress in Photovoltaics, vol. 18, no. 2, pp. 128–136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. K. Nazeeruddin, A. Kay, I. Rodicio et al., “Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes,” Journal of the American Chemical Society, vol. 115, no. 14, pp. 6382–6390, 1993. View at Google Scholar · View at Scopus
  19. G. P. Smestad, “Education and solar conversion: demonstrating electron transfer,” Solar Energy Materials and Solar Cells, vol. 55, no. 1-2, pp. 157–178, 1998. View at Google Scholar · View at Scopus
  20. F. Pichot, R. Pitts, and B. Gregg, “Low-temperature sintering of TiO2 colloids: application to flexible dye-sensitized solar cells,” Langmuir, vol. 16, no. 13, pp. 5626–5630, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Liu, H. Wang, H. Shen, and W. Chen, “The 3-dimensional dye-sensitized solar cell and module based on all titanium substrates,” Applied Energy, vol. 87, no. 2, pp. 436–441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Van der Zanden and A. Goossens, “The nature of electron migration in dye-sensitized nanostructured TiO2,” Journal of Physical Chemistry B, vol. 104, no. 30, pp. 7171–7178, 2000. View at Google Scholar · View at Scopus
  23. K. Tennakone, P. K. Bandaranayake, P. V. Jayaweera, A. Konno, and G. Kumara, “Dye-sensitized composite semiconductor nanostructures,” Physica E, vol. 14, no. 1-2, pp. 190–196, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Shklover, M. K. Nazeeruddin, S. M. Zakeeruddin et al., “Structure of nanocrystalline TiO2 powders and precursor to their highly efficient photosensitizer,” Chemistry of Materials, vol. 9, no. 2, pp. 430–439, 1997. View at Google Scholar · View at Scopus
  25. W. Xu, S. Dai, L. Hu et al., “Influence of different surface modifications on the photovoltaic performance and dark current of dye-sensitized solar cells,” Plasma Science and Technology, vol. 9, no. 5, pp. 556–559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Hara, Y. Tachibana, Y. Ohga et al., “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes,” Solar Energy Materials and Solar Cells, vol. 77, no. 1, pp. 89–103, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Japanese Journal of Applied Physics, vol. 45, no. 24–28, pp. 638–640, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Giannouli and M. Fakis, “Interfacial electron transfer dynamics and photovoltaic performance of TiO2 and ZnO solar cells sensitized with Coumarin 343,” Journal of Photochemistry and Photobiology A, vol. 226, no. 1, pp. 42–50, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Tributsch, “Dye sensitization solar cells: a critical assessment of the learning curve,” Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1511–1530, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Liu, D. Zhou, X. Li, and P. Yue, “Photoelectrocatalytic degradation of Rose Bengal,” Journal of Environmental Sciences, vol. 15, no. 5, pp. 595–599, 2003. View at Google Scholar · View at Scopus
  31. H. Tsubomura, M. Matsumura, K. Nakatani, K. Yamamoto, and K. Maeda, ““Wet-type” solar cells with semiconductor electrodes,” Solar Energy, vol. 21, no. 2, pp. 93–98, 1978. View at Google Scholar · View at Scopus
  32. K. Keis, C. Bauer, G. Boschloo et al., “Nanostructured ZnO electrodes for dye-sensitized solar cell applications,” Journal of Photochemistry and Photobiology A, vol. 148, no. 1–3, pp. 57–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. D. W. Bahnemann, “Ultrasmall metal oxide particles: preparation, photophysical characterization and photocatalytic properties,” Israel Journal of Chemistry, vol. 33, pp. 115–136, 1993. View at Google Scholar
  34. M. Senevirathne, P. Pitigala, V. Sivakumar, P. Jayaweera, A. Perera, and K. Tennakone, “Sensitization of TiO2 and ZnO nanocrystalline films with acriflavine,” Journal of Photochemistry and Photobiology A, vol. 195, no. 2-3, pp. 364–367, 2008. View at Publisher · View at Google Scholar · View at Scopus