Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 614567, 9 pages
http://dx.doi.org/10.1155/2013/614567
Research Article

Evaluation of Photocatalytic Active Coatings on Sintered Glass Tubes by Methylene Blue

1University of Applied Sciences Mittelhessen, Laboratory of Material Science, Surface Interface and System Design, Wiesenstraße 14, 35390 Giessen, Germany
2University of Applied Sciences Mittelhessen, Institute of Bioprocess Engineering and Pharmaceutical Technology, Wiesenstraße 14, 35390 Giessen, Germany
3Department of Chemical Engineering, Faculty of Engineering, Kansas State University, Manhattan, KS 66506, USA
4Department of Chemistry, Faculty of Biology and Chemistry, Justus-Liebig-University Giessen, 35392 Giessen, Germany

Received 12 May 2013; Revised 11 September 2013; Accepted 14 September 2013

Academic Editor: Niyaz Mohammad Mahmoodi

Copyright © 2013 Colin Awungacha Lekelefac et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. B. Dejohn and R. A. Hutchins, “Treatment of dye wastes with granular activated carbon,” Textile Chemist and Colorist, vol. 8, p. 69, 1976. View at Google Scholar · View at Scopus
  2. Y. M. Slokar and A. Majcen Le Marechal, “Methods of decoloration of textile wastewaters,” Dyes and Pigments, vol. 37, no. 4, pp. 335–356, 1998. View at Google Scholar · View at Scopus
  3. S. S. Patll, “Biodegradation studies of aniline and nitrobenzene in aniline plant waste water by gas chromatography,” Environmental Science and Technology, vol. 22, no. 10, pp. 1160–1165, 1988. View at Google Scholar · View at Scopus
  4. G. Sagawe, R. J. Brandi, D. Bahnemann, and A. E. Cassano, “Photocatalytic reactors for treating water pollution with solar illumination. I: a simplified analysis for batch reactors,” Chemical Engineering Science, vol. 58, no. 12, pp. 2587–2599, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C. S. Turchi, D. F. Ollis, and R. W. Matthews, “Photocatalytic reactor design: an example of mass-transfer limitations with an immobilized catalyst,” Journal of Physical Chemistry, vol. 92, no. 23, pp. 6852–6853, 1988. View at Google Scholar · View at Scopus
  6. M. C. Hidalgo and D. Bahnemann, “Highly photoactive supported TiO2 prepared by thermal hydrolysis of TiOSO4: optimisation of the method and comparison with other synthetic routes,” Applied Catalysis B, vol. 61, no. 3-4, pp. 259–266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. C. Hidalgo, S. Sakthivel, and D. Bahnemann, “Highly photoactive and stable TiO2 coatings on sintered glass,” Applied Catalysis A, vol. 277, no. 1-2, pp. 183–189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Chen and A. K. Ray, “Photodegradation kinetics of 4-nitrophenol in TiO2 suspension,” Water Research, vol. 32, no. 11, pp. 3223–3234, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. A. L. Linsebigler, G. Lu, and J. T. Yates Jr., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, no. 3, pp. 735–758, 1995. View at Google Scholar · View at Scopus
  10. A. F. Hollemann and E. Wiberg, Lehrbuch Der Anorganischen Chemie, De Grutyer, Berlin, Germany, 1995.
  11. R. Subasri, M. Tripathi, K. Murugan, J. Revathi, G. V. N. Rao, and T. N. Rao, “Investigations on the photocatalytic activity of sol-gel derived plain and Fe3+/Nb5+-doped titania coatings on glass substrates,” Materials Chemistry and Physics, vol. 124, no. 1, pp. 63–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Sakthivel and H. Kisch, “Daylight photocatalysis by carbon-modified titanium dioxide,” Angewandte Chemie, vol. 42, no. 40, pp. 4908–4911, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, “Band gap narrowing of titanium dioxide by sulfur doping,” Applied Physics Letters, vol. 81, no. 3, pp. 454–456, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Nakamura, T. Tanaka, and Y. Nakato, “Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes,” Journal of Physical Chemistry B, vol. 108, no. 30, pp. 10617–10620, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. S. Lee, S.-S. Hong, and M. Mohseni, “Synthesis of photocatalytic nanosized TiO2-Ag particles with sol-gel method using reduction agent,” Journal of Molecular Catalysis A, vol. 242, no. 1-2, pp. 135–140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. Y.-S. Ma, C.-N. Chang, Y.-P. Chiang, H.-F. Sung, and A. C. Chao, “Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst,” Chemosphere, vol. 71, no. 5, pp. 998–1004, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. Li, R. Xie, E. A. Mintz, and J. K. Shang, “Enhanced visible-light photocatalytic degradation of humic acid by palladium-modified nitrogen-doped titanium oxide,” Journal of the American Ceramic Society, vol. 90, no. 12, pp. 3863–3868, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. O. Carneiro, V. Teixeira, A. Portinha, L. Dupák, A. Magalhães, and P. Coutinho, “Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering,” Vacuum, vol. 78, no. 1, pp. 37–46, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. J. C.-S. Wu and C.-H. Chen, “A visible-light response vanadium-doped titania nanocatalyst by sol-gel method,” Journal of Photochemistry and Photobiology A, vol. 163, no. 3, pp. 509–515, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. C. Chan and M. A. Barteau, “Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition,” Langmuir, vol. 21, no. 12, pp. 5588–5595, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J.-M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water,” Applied Catalysis B, vol. 31, no. 2, pp. 145–157, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Reeves, R. Ohlhausen, D. Sloan et al., “Photocatalytic destruction of organic dyes in aqueous TiO2 suspensions using concentrated simulated and natural solar energy,” Solar Energy, vol. 48, no. 6, pp. 413–420, 1992. View at Google Scholar · View at Scopus
  23. R. W. Matthews, “Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand,” Water Research, vol. 25, no. 10, pp. 1169–1176, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Kerzhentsev, C. Guillard, J.-M. Herrmann, and P. Pichat, “Photocatalytic pollutant removal in water at room temperature: case study of the total degradation of the insecticide fenitrothion (phosphorothioic acid O,O-dimethyl-O-(3-methyl-4-nitro-phenyl) ester),” Catalysis Today, vol. 27, no. 1-2, pp. 215–220, 1996. View at Google Scholar · View at Scopus
  25. Y.-H. Xu, H.-R. Chen, Z.-X. Zeng, and B. Lei, “Investigation on mechanism of photocatalytic activity enhancement of nanometer cerium-doped titania,” Applied Surface Science, vol. 252, no. 24, pp. 8565–8570, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Vuppala, M. G. Motappa, S. S. Venkata, and P. H. Sadashivaiah, “Photocatalytic degradation of methylene blue using a zinc oxide-cerium oxide catalyst,” European Journal of Chemistry, vol. 3, no. 2, pp. 191–195, 2012. View at Google Scholar
  27. J. Bennani, R. Dillert, T. M. Gesing, and D. Bahnemann, “Physical properties, stability, and photocatalytic activity of transparent TiO2/SiO2 films,” Separation and Purification Technology, vol. 67, no. 2, pp. 173–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. R.-A. Doong, C.-H. Chen, R. A. Maithreepala, and S.-M. Chang, “The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions,” Water Research, vol. 35, no. 12, pp. 2873–2880, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Rideh, A. Wehrer, D. Ronze, and A. Zoulalian, “Photocatalytic Degradation of 2-Chlorophenol in TiO2 Aqueous Suspension: modeling of Reaction Rate,” Industrial and Engineering Chemistry Research, vol. 36, no. 11, pp. 4712–4718, 1997. View at Google Scholar · View at Scopus
  30. R. Fretwell and P. Douglas, “An active, robust and transparent nanocrystalline anatase TiO2 thin film—preparation, characterisation and the kinetics of photodegradation of model pollutants,” Journal of Photochemistry and Photobiology A, vol. 143, no. 2-3, pp. 229–240, 2001. View at Google Scholar · View at Scopus
  31. M. Addamo, V. Augugliaro, A. Di Paola et al., “Photocatalytic thin films of TiO2 formed by a sol-gel process using titanium tetraisopropoxide as the precursor,” Thin Solid Films, vol. 516, no. 12, pp. 3802–3807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. N. M. Mahmoodi, “Photocatalytic degradation of dyes using carbon nanotube and titania nanoparticle,” Water, Air, & Soil Pollution, vol. 224, p. 1612, 2013. View at Google Scholar
  33. I. K. Konstantinou and T. A. Albanis, “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review,” Applied Catalysis B, vol. 49, no. 1, pp. 1–14, 2004. View at Publisher · View at Google Scholar · View at Scopus