Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 815473, 6 pages
http://dx.doi.org/10.1155/2013/815473
Research Article

Physicochemical Study of Photocatalytic Activity of TiO2 Supported Palygorskite Clay Mineral

1Laboratoire de Matière Condensée et Nanostructures (LMCN), Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, BP 549, 40 000 Marrakech, Morocco
2CIRIMAT, Université de Toulouse, CNRS-UPS-INP, ENSIACET, 4 allée Emile Monso, BP 44362, 31030 Toulouse Cedex 4, France

Received 8 February 2013; Accepted 28 March 2013

Academic Editor: Christos Trapalis

Copyright © 2013 Lahcen Bouna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catalysis Today, vol. 53, no. 1, pp. 115–129, 1999. View at Google Scholar · View at Scopus
  2. A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” Journal of Photochemistry and Photobiology C, vol. 1, no. 1, pp. 1–21, 2000. View at Google Scholar · View at Scopus
  3. Y. Paz, “Preferential photodegradation—why and how?” Comptes Rendus Chimie, vol. 9, no. 5-6, pp. 774–787, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. O. Carp, C. L. Huisman, and A. Reller, “Photoinduced reactivity of titanium dioxide,” Progress in Solid State Chemistry, vol. 32, no. 1-2, pp. 33–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. P. K. J. Robertson, “Semiconductor photocatalysis: an environmentally acceptable alternative production technique and effluent treatment process,” Journal of Cleaner Production, vol. 4, no. 3-4, pp. 203–212, 1996. View at Google Scholar · View at Scopus
  6. T. An, J. Chen, G. Li et al., “Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts. Degradation of decabromodiphenyl ether (BDE 209),” Catalysis Today, vol. 139, pp. 69–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Aranda, R. Kun, M. A. Martin-Luengo, S. Letaïef, I. Dékány, and E. Ruiz-Hitzky, “Titania-sepiolite nanocomposites prepared by a surfactant templating colloidal route,” Chemistry of Materials, vol. 20, pp. 84–91, 2008. View at Google Scholar
  8. J. Liu, M. Dong, S. Zuo, and Y. Yu, “Solvothermal preparation of TiO2/montmorillonite and photocatalytic activity,” Applied Clay Science, vol. 43, no. 2, pp. 156–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Nieto-Suárez, G. Palmisano, M. L. Ferrer et al., “Self-assembled titania-silica-sepiolite based nanocomposites for water decontamination,” Journal of Materials Chemistry, vol. 19, no. 14, pp. 2070–2075, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Bouna, B. Rhouta, M. Amjoud et al., “Synthèse, caractérisations et tests photocatalytiques d'un matériau argileux d'origine naturelle à base de la beidellite fonctionnalisée par TiO2,” Matériaux Et Techniques, vol. 100, pp. 241–225, 2012. View at Google Scholar
  11. L. Bouna, B. Rhouta, M. Amjoud et al., “Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers,” Applied Clay Science, vol. 52, no. 3, pp. 301–311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Bouna, B. Rhouta, L. Daoudi et al., “Mineralogical and physico-chemical characterizations of ferruginous beidellite-rich clay from Agadir basin (Moroc),” Clays and Clay Minerals, vol. 60, pp. 278–290, 2012. View at Google Scholar
  13. E. Zatile, B. Rhouta, L. Bouna et al., “Comprehensive physicochemical study of dioctahedral palygorskite-rich clay from Marrakech High-Atlas (Morocco),” Physics and Chemistry of Minerals, 2013. View at Publisher · View at Google Scholar
  14. K. Hofstadler, R. Bauer, S. Novalic, and G. Heisler, “New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: photomineralization of 4-chlorophenol,” Environmental Science Technology, vol. 28, no. 4, pp. 670–674, 1994. View at Google Scholar · View at Scopus
  15. C. Sarantopoulos, E. Puzenat, C. Guillard, J. M. Herrmann, A. N. Gleizes, and F. Maury, “Microfibrous TiO2 supported photocatalysts prepared by metal-organic chemical vapor infiltration for indoor air and waste water purification,” Applied Catalysis B, vol. 91, no. 1-2, pp. 225–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Faisal, M. Abu Tariq, and M. Muneer, “Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania,” Dyes and Pigments, vol. 72, no. 2, pp. 233–239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Fernández-Nieves, C. Richter, and F. J. De Las Nieves, “Point of zero charge estimation for a TiO2/water interface,” Progress in Colloid and Polymer Science, vol. 110, pp. 21–24, 1998. View at Google Scholar · View at Scopus
  18. L. A. García Rodenas, A. D. Weisz, G. E. Magaz, and M. A. Blesa, “Effect of light on the electrokinetic behavior of TiO2 particles in contact with Cr(VI) aqueous solutions,” Journal of Colloid and Interface Science, vol. 230, no. 1, pp. 181–185, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, “Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions,” Environmental Science and Technology, vol. 25, no. 3, pp. 494–500, 1991. View at Google Scholar · View at Scopus
  20. W. Xi and S. U. Geissen, “Separation of TiO2 from photocatalytically treated water by cross-flow microfiltration,” Water Research, vol. 35, no. 5, pp. 1256–1262, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Bouna, B. Rhouta, M. Amjoud et al., “Correlation between eletrokinetic mobility and ionic dyes adsorption of Moroccan stevensite,” Applied Clay Science, vol. 48, no. 3, pp. 527–530, 2010. View at Publisher · View at Google Scholar · View at Scopus