Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 984516, 5 pages
http://dx.doi.org/10.1155/2013/984516
Research Article

Triazoloisoquinoline-Based/Ruthenium-Hybrid Sensitizer for Efficient Dye-Sensitized Solar Cells

1Department of Electrical Engineering, Nation Cheng Kung University, No. 1, Daxue Road, East District, Tainan City 70101, Taiwan
2ShiFeng Technology Co., Ltd., Room 603, Building. R2, No. 31, Gongye 2nd Road, Annan District, Tainan 70955, Taiwan

Received 8 September 2013; Accepted 12 October 2013

Academic Editor: Teen-Hang Meen

Copyright © 2013 Che-Lung Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. O. ’Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737–740, 1991. View at Publisher · View at Google Scholar
  2. A. Mishra, M. K. R. Fischer, and P. Bauerle, “Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules,” Angewandte Chemie, vol. 48, no. 14, pp. 2474–2499, 2009. View at Publisher · View at Google Scholar
  3. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595–6663, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. K. Nazeeruddin, A. Kay, L. Rodicio et al., “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” Journal of the American Chemical Society, vol. 115, p. 6382, 1993. View at Publisher · View at Google Scholar
  5. J. He, W. Wu, J. Hua et al., “Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance,” Journal of Materials Chemistry, vol. 21, pp. 6054–6062, 2011. View at Publisher · View at Google Scholar
  6. Y. Numata, I. Ashraful, Y. Shirai, and L. Han, “Preparation of donor-acceptor type organic dyes bearing various electron-withdrawing groups for dye-sensitized solar cell application,” Chemical Communications, vol. 47, no. 21, pp. 6159–6161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. L.-Y. Lin, C.-H. Tsai, K.-T. Wong et al., “Organic dyes containing coplanar diphenyl-substituted dithienosilole core for efficient dye-sensitized solar cells,” The Journal of Organic Chemistry, vol. 75, no. 14, pp. 4778–4785, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Miao, L. Wu, J. Cui, M. Huang, and T. Ma, “A new type of dye-sensitized solar cell with a multilayered photoanode prepared by a film-transfer technique,” Advanced Materials, vol. 23, no. 24, pp. 2764–2768, 2011. View at Publisher · View at Google Scholar
  9. J. H. Yum, S. R. Jang, P. Walter et al., “Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers,” Chemical Communications, no. 44, pp. 4680–4682, 2007. View at Publisher · View at Google Scholar
  10. Y. Hong, J. Liao, D. Cao et al., “Organic dye bearing asymmetric double donor-π-acceptor chains for dye-sensitized solar cells,” The Journal Organic Chemistry, vol. 76, p. 8015, 2011. View at Publisher · View at Google Scholar
  11. B. Liu, W. Zhu, Q. Zhang et al., “Conveniently synthesized isophorone dyes for high efficiency dye-sensitized solar cells: tuning photovoltaic performance by structural modification of donor group in donor-π-acceptor system,” Chemical Communications, no. 13, pp. 1766–1668, 2009. View at Publisher · View at Google Scholar
  12. S. Rühle, M. Greenshtein, S.-G. Chen et al., “Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 109, no. 40, pp. 18907–18913, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. H. Yum, P. Walter, S. Huber et al., “Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye,” Journal of the American Chemical Society, vol. 129, pp. 10320–10321, 2007. View at Publisher · View at Google Scholar
  14. A. Mishra, N. Pootrakulchote, M. K. R. Fischer et al., “Design and synthesis of a novel anchoring ligand for highly efficient thin film dye-sensitized solar cells,” Chemical Communications, no. 46, pp. 7146–7148, 2009. View at Publisher · View at Google Scholar · View at Scopus