Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2014, Article ID 176835, 8 pages
http://dx.doi.org/10.1155/2014/176835
Research Article

Microwave Synthesis of Zinc Oxide/Reduced Graphene Oxide Hybrid for Adsorption-Photocatalysis Application

1Department of Physics, Low Dimensional Materials Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
3Functional Device Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Received 4 November 2013; Accepted 9 December 2013; Published 2 January 2014

Academic Editor: Lizhi Zhang

Copyright © 2014 Fatin Saiha Omar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Asiagwu, “Sorption model for the removal of m-anisidine dye from aqueous solution using beaker's yeast (Saccharomuces cerevisiae),” International Journal of Research and Reviews in Applied Sciences, vol. 13, pp. 617–625, 2012. View at Google Scholar
  2. E. S. Beach, R. T. Malecky, R. R. Gil, C. P. Horwitz, and T. J. Collins, “Fe-TAML/hydrogen peroxide degradation of concentrated solutions of the commercial azo dye tartrazine,” Catalysis Science and Technology, vol. 1, no. 3, pp. 437–443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. K. Singh, S. S. Multani, and S. B. Patil, “ZnO nanorods and nanopolypods synthesized using microwave assisted wet chemical and thermal evaporation method,” Indian Journal of Pure and Applied Physics, vol. 49, no. 4, pp. 270–276, 2011. View at Google Scholar · View at Scopus
  4. M. Gusatti, J. D. A. do Rosário, C. E. M. de Campos et al., “Production and characterization of ZnO nanocrystals obtained by solochemical processing at different temperatures,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 7, pp. 4348–4351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: solution growth and functional properties,” Nano Research, vol. 4, no. 11, pp. 1013–1098, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Yang, L. Ren, C. Zhang, S. Huang, and T. Liu, “Facile fabrication of functionalized graphene sheets (FGS)/ZnO nanocomposites with photocatalytic property,” ACS Applied Materials and Interfaces, vol. 3, no. 7, pp. 2779–2785, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. N. P. Mohabansi, V. B. Patil, and N. Yenkie, “A comparative study on photo degradation of methylene blue dye effluent by advanced oxidation process by using TiO2/ZnO photo catalyst,” Rasayan Journal of Chemistry, vol. 4, no. 4, pp. 814–819, 2011. View at Google Scholar · View at Scopus
  8. J. B. Zhong, J. Z. Li, X. Y. He et al., “Improved photocatalytic performance of Pd-doped ZnO,” Current Applied Physics, vol. 12, no. 3, pp. 998–1001, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. M.-K. Lee and H.-F. Tu, “Au-ZnO and Pt-ZnO films prepared by electrodeposition as photocatalysts,” Journal of the Electrochemical Society, vol. 155, no. 12, pp. D758–D762, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. V. Foreman, J. Li, H. Peng, S. Choi, H. O. Everitt, and J. Liu, “Time-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders,” Nano Letters, vol. 6, no. 6, pp. 1126–1130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Zhou, T. Shi, and H. Zhou, “Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation,” Applied Surface Science, vol. 258, no. 17, pp. 6204–6211, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. A. R. Marlinda, N. M. Huang, M. R. Muhamad et al., “Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites,” Materials Letters, vol. 80, pp. 9–12, 2012. View at Google Scholar
  13. W. Zou, J. Zhu, Y. Sun, and X. Wang, “Depositing ZnO nanoparticles onto graphene in a polyol system,” Materials Chemistry and Physics, vol. 125, no. 3, pp. 617–620, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. W.-T. Song, J. Xie, S.-Y. Liu et al., “Graphene decorated with ZnO nanocrystals with improved electrochemical properties prepared by a facile in situ hydrothermal route,” International Journal of Electrochemical Science, vol. 7, no. 3, pp. 2164–2174, 2012. View at Google Scholar · View at Scopus
  15. W. Zou, J. Zhu, and X. Wang, “Preparation and characterization of graphene oxide-ZnO nanocomposites,” Materials Science Forum, vol. 688, pp. 228–232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Lv, L. Pan, X. Liu et al., “One-step synthesis of CdS-TiO2-chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photocatalytic degradation of methyl orange,” Catalysis Science and Technology, vol. 2, no. 4, pp. 754–758, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. P. D. Tran, S. K. Batabyal, S. S. Pramana, J. Barber, L. H. Wong, and S. C. J. Loo, “A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O,” Nanoscale, vol. 4, pp. 3875–3878, 2012. View at Google Scholar
  18. X. Dou, “Is graphene brand new in carbon-based semiconductor photocatalysts for organic pollutants degradation?” Journal of Thermodynamics and Catalysis, vol. 3, pp. 1–2, 2013. View at Google Scholar
  19. Y. Zheng, K. Lv, Z. Wang, K. Deng, and M. Li, “Microwave-assisted rapid synthesis of anatase TiO2 nanocrystals with exposed {001} facets,” Journal of Molecular Catalysis A, vol. 356, pp. 137–143, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. W.-T. Yao, S.-H. Yu, S.-J. Liu, J.-P. Chen, X.-M. Liu, and F.-Q. Li, “Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property,” Journal of Physical Chemistry B, vol. 110, no. 24, pp. 11704–11710, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Xu, Y. Zhou, T. Yuan, and Y. Li, “Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea,” Electrochimica Acta, vol. 112, pp. 587–595, 2013. View at Google Scholar
  22. Y. Liu, C. Xie, J. Li, T. Zou, and D. Zeng, “New insights into the relationship between photocatalytic activity and photocurrent of TiO2/WO3 nanocomposite,” Applied Catalysis A, vol. 433-434, pp. 81–87, 2012. View at Google Scholar
  23. Y. Li, W. Gao, L. Ci, C. Wang, and P. M. Ajayan, “Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation,” Carbon, vol. 48, no. 4, pp. 1124–1130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. S. V. Kumar, N. M. Huang, N. Yusoff, and H. N. Lim, “High performance magnetically separable graphene/zinc oxide nanocomposite,” Materials Letters, vol. 93, pp. 411–414, 2013. View at Google Scholar
  25. G. Singh, A. Choudhary, D. Haranath et al., “ZnO decorated luminescent graphene as a potential gas sensor at room temperature,” Carbon, vol. 50, no. 2, pp. 385–394, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. K. Kim and D. H. Min, “Simultaneous reduction and functionalization of graphene oxide by polyallylamine for nanocomposite formation,” Carbon Letters, vol. 13, pp. 29–33, 2012. View at Google Scholar
  27. J. Yang and S. Gunasekaran, “Electrochemically reduced graphene oxide sheets as high performance supercapacitors,” Carbon, vol. 51, pp. 36–44, 2013. View at Google Scholar
  28. Y. Yang and T. Liu, “Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid,” Applied Surface Science, vol. 257, no. 21, pp. 8950–8954, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Liu, L. Pan, Q. Zhao et al., “UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI),” Chemical Engineering Journal, vol. 183, pp. 238–243, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Y. Li and H. Li, “Physical and electrical performance of vapor-solid grown ZnO straight nanowires,” Nanoscale Research Letters, vol. 4, no. 2, pp. 165–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. X.-Y. Ye, Y.-M. Zhou, Y.-Q. Sun, J. Chen, and Z.-Q. Wang, “Preparation and characterization of Ag/ZnO composites via a simple hydrothermal route,” Journal of Nanoparticle Research, vol. 11, no. 5, pp. 1159–1166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Communications, vol. 143, no. 1-2, pp. 47–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Stankovich, D. A. Dikin, R. D. Piner et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Yang, X. Zhao, X. Shan et al., “Blue-shift of UV emission in ZnO/graphene composites,” Journal of Alloys and Compounds, vol. 556, pp. 1–5, 2013. View at Google Scholar
  35. T. Xu, L. Zhang, H. Cheng, and Y. Zhu, “Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study,” Applied Catalysis B, vol. 101, no. 3-4, pp. 382–387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Kim, J. T. Baek, and H. H. Park, “A study of the electrical properties of graphene-incorporated direct-patternable ZnO thin films,” Thin Solid Films, vol. 529, pp. 234–2237, 2013. View at Google Scholar
  37. A. Prakash, S. K. Misra, and D. Bahadur, “The role of reduced graphene oxide capping on defect induced ferromagnetism of ZnO nanorods,” Nanotechnology, vol. 24, Article ID 095705, 2013. View at Google Scholar
  38. J. Wang, B. Li, J. Chen et al., “Diethylenetriamine-assisted synthesis of CdS nanorods under reflux condition and their photocatalytic performance,” Journal of Alloys and Compounds, vol. 535, pp. 15–20, 2012. View at Google Scholar
  39. H. N. Lim, R. Nurzulaikha, I. Harrison et al., “Preparation and characterization of tin oxide, SnO2 nanoparticles decorated graphene,” Ceramics International, vol. 38, no. 5, pp. 4209–4216, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Xu, Z. Shi, Y. Fan, J. Dong, J. Shi, and M. Z.-C. Hu, “Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions,” Industrial and Engineering Chemistry Research, vol. 38, no. 2, pp. 373–379, 1999. View at Google Scholar · View at Scopus
  41. F. Ye, Y. Peng, C. Guang-Yi, B. Deng, and X. An-Wu, “Facile solution synthesis and characterization of ZnO mesocrystals and ultralong nanowires from layered basic zinc salt precursor,” Journal of Physical Chemistry C, vol. 113, no. 24, pp. 10407–10415, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Kou, Y. Shao, D. Wang et al., “Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction,” Electrochemistry Communications, vol. 11, no. 5, pp. 954–957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. A. A. Más and D. Wei, “Photoelectrochemical properties of graphene and its derivatives,” Nanomaterials, vol. 3, pp. 325–356, 2013. View at Google Scholar
  44. J. Durantini, P. P. Boix, M. Gervaldo et al., “Photocurrent enhancement in dye-sensitized photovoltaic devices with titania-graphene composite electrodes,” Journal of Electroanalytical Chemistry, vol. 683, pp. 43–46, 2012. View at Google Scholar