Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2014, Article ID 756408, 9 pages
http://dx.doi.org/10.1155/2014/756408
Research Article

Synthesis and Characterization of Cerium Doped Titanium Catalyst for the Degradation of Nitrobenzene Using Visible Light

Department of Chemical Engineering, A. C. Tech, Anna University, Chennai 600 025, India

Received 22 May 2013; Accepted 3 October 2013; Published 6 January 2014

Academic Editor: Manickavachagam Muruganandham

Copyright © 2014 Padmini Ellappan and Lima Rose Miranda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. C. Moon, H. Mametsuka, S. Tabata, and E. Suzuki, “Photocatalytic production of hydrogen from water using TiO2 and B/TiO2,” Catalysis Today, vol. 58, no. 2, pp. 125–132, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Lettmann, K. Hildenbrand, H. Kisch, W. Macyk, and W. F. Maier, “Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst,” Applied Catalysis B, vol. 32, no. 4, pp. 215–227, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. C.-S. Wu and C. Chen, “A visible-light response vanadium-doped titania nanocatalyst by sol-gel method,” Journal of Photochemistry and Photobiology A, vol. 163, no. 3, pp. 509–515, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Umebayashi, T. Yamaki, S. Tanaka, and K. Asai, “Visible light-induced degradation of methylene blue on S-doped TiO2,” Chemistry Letters, vol. 32, no. 4, pp. 330–331, 2003. View at Google Scholar · View at Scopus
  6. R. J. Tayade, R. G. Kulkarni, and R. V. Jasra, “Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2,” Industrial and Engineering Chemistry Research, vol. 45, no. 3, pp. 922–927, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. H. Priya and G. Madras, “Photocatalytic degradation of nitrobenzenes with combustion synthesized nano-TiO2,” Journal of Photochemistry and Photobiology A, vol. 178, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Ikeda, N. Sugiyama, B. Pal et al., “Photocatalytic activity of transition-metal-loaded titanium(IV) oxide powders suspended in aqueous solutions: correlation with electron-hole recombination kinetics,” Physical Chemistry Chemical Physics, vol. 3, no. 2, pp. 267–273, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Fuerte, M. D. Hernández-Alonso, A. J. Maira et al., “Visible light-activated nanosized doped-TiO2 photocatalysts,” Chemical Communications, no. 24, pp. 2718–2719, 2001. View at Google Scholar · View at Scopus
  10. W. Choi, A. Termin, and M. R. Hoffmann, “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics,” Journal of Physical Chemistry, vol. 98, no. 51, pp. 13669–13679, 1994. View at Google Scholar · View at Scopus
  11. B. M. Reddy, P. M. Sreekanth, Y. Yamada, Q. Xu, and T. Kobayashi, “Surface characterization of sulfate, molybdate, and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques,” Applied Catalysis A, vol. 228, no. 1-2, pp. 269–278, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. V. M. Orera, R. I. Merino, and F. Peña, “Ce3+Ce4+ conversion in ceria-doped zirconia single crystals induced by oxido-reduction treatments,” Solid State Ionics, vol. 72, no. 2, pp. 224–231, 1994. View at Google Scholar · View at Scopus
  13. W. M. Yen, M. Raukas, S. A. Basun, W. Van Schaik, and U. Happek, “Optical and photoconductive properties of cerium-doped crystalline solids,” Journal of Luminescence, vol. 69, no. 5-6, pp. 287–294, 1996. View at Google Scholar · View at Scopus
  14. S. W. Chen, J. M. Lee, K. T. Lu et al., “Band-gap narrowing of TiO2 doped with Ce probed with x-ray absorption spectroscopy,” Applied Physics Letters, vol. 97, no. 1, Article ID 012104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Liu, X. Z. Li, Y. J. Leng, and W. Z. Li, “An alternative approach to ascertain the rate-determining steps of TiO2 photoelectrocatalytic reaction by electrochemical impedance spectroscopy,” Journal of Physical Chemistry B, vol. 107, no. 34, pp. 8988–8996, 2003. View at Google Scholar · View at Scopus
  16. D. S. Bhatkhande, V. G. Pangarkar, and A. A. C. M. Beenackers, “Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: chemical effects and scaleup,” Water Research, vol. 37, no. 6, pp. 1223–1230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Saif and M. S. A. Abdel-Mottaleb, “Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: preparation, characterization and potential applications,” Inorganica Chimica Acta, vol. 360, no. 9, pp. 2863–2874, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Alouche, “Preparation and characterization of Copper and/or Cerium catalysts supported on Alumina or Ceria,” Jordan Journal of Mechanical and Industrial Engineering, vol. 2, pp. 111–116, 2008. View at Google Scholar
  19. R. J. Tayade, P. K. Surolia, R. G. Kulkarni, and R. V. Jasra, “Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2,” Science and Technology of Advanced Materials, vol. 8, no. 6, pp. 455–462, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. X.-Z. Shen, Z.-C. Liu, S.-M. Xie, and J. Guo, “Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination,” Journal of Hazardous Materials, vol. 162, no. 2-3, pp. 1193–1198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Wang, Y. Huang, and S. Yang, “Photocatalytic degradation of nitrobenzene wastewater with H3PW12O40/TiO2,” in Proceedings of the International Conference on Mechanic Automation and Control Engineering (MACE '10), pp. 1303–1305, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. P. K. Surolia, R. J. Tayade, and R. V. Jasra, “Photocatalytic degradation of nitrobenzene in an aqueous system by transition-metal-exchanged ETS-10 zeolites,” Industrial and Engineering Chemistry Research, vol. 49, no. 8, pp. 3961–3966, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Bahnemann, M. Muneer, and M. M. Haque, “Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions,” Catalysis Today, vol. 124, no. 3-4, pp. 133–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. E. Cassano and O. M. Alfano, “Reaction engineering of suspended solid heterogeneous photocatalytic reactors,” Catalysis Today, vol. 58, no. 2, pp. 167–197, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. A. A. Adesina, “Industrial exploitation of photocatalysis: progress, perspectives and prospects,” Catalysis Surveys from Asia, vol. 8, no. 4, pp. 265–273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Ku and C. B. Hsieh, “Photocatalytic decomposition of 2,4-dichlorophenol in aqueous TiO2 suspensions,” Water Research, vol. 26, no. 11, pp. 1451–1456, 1992. View at Publisher · View at Google Scholar · View at Scopus