Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2016, Article ID 2758546, 8 pages
Research Article

Construction and Testing of Lightweight and Low-Cost Pneumatically Inflated Solar Concentrators

1Instituto de Física, Universidad Autónoma de San Luis Potosí, Avenida Manuel Nava 6, 78290 San Luis Potosí, SLP, Mexico
2Laboratorio Nacional de la Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, 78210 San Luis Potosí, SLP, Mexico
3Universidad Tecnológica de Querétaro, Avenida Pie de la Cuesta No. 2501, Unidad Nacional, 76148 Querétaro, QRO, Mexico

Received 28 August 2015; Revised 3 December 2015; Accepted 8 December 2015

Academic Editor: Wilfried G. J. H. M. Van Sark

Copyright © 2016 F. M. I. De Los Santos-García et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Kalogirou, “Solar thermal collectors and applications,” Progress in Energy and Combustion Science, vol. 30, no. 3, pp. 231–295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Fernández-García, E. Zarza, L. Valenzuela, and M. Pérez, “Parabolic-trough solar collectors and their applications,” Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 1695–1721, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Rabl, Active Solar Collectors and Their Applications, Oxford University Press, New York, NY, USA, 1984.
  4. ALANOD Aluminium—Veredlung GmbH & Co. KG, 2014,
  5. E. Venegas Reyes, Diseño, Construcción y Evaluación de un Arreglo de Concentradores de Canal Parabólico para Calor de Proceso, Tesis IER-UNAM, 2013.
  6. C. Ramos Berumen, Taller de Sistemas Termosolares a concentración, Impartido el 29 de Septiembre 2011 en San Luis Potosí, por Instituto de Investigaciones Eléctricas, 2011.
  7. A. V. Arasu and T. Sornakumar, “Design, manufacture and testing of fiberglass reinforced parabola trough for parabolic trough solar collectors,” Solar Energy, vol. 81, no. 10, pp. 1273–1279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. L. G. Vidriales Escobar, Colector de canal parabólico para la generación directa de vapor para calor de proceso [Tesis CIE], Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico, 2007.
  9. C. Vannoni, R. Battisti, and S. Drigo, Eds., Potential for Solar Heat in Industrial Processes, Solar Heating and Cooling Executive Committee of the International Energy Agency, Rome, Italy, 2008.
  10. H. Schnitzer, C. Brunner, and G. Gwehenberger, “Minimizing greenhouse gas emissions through the application of solar thermal energy in industrial processes,” Journal of Cleaner Production, vol. 15, no. 13-14, pp. 1271–1286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. J. Atkins, M. R. W. Walmsley, and A. S. Morrison, “Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes,” Energy, vol. 35, no. 5, pp. 1867–1873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Venegas-Reyes, O. A. Jaramillo, R. Castrejón-García, J. O. Aguilar, and F. Sosa-Montemayor, “Design, construction, and testing of a parabolic trough solar concentrator for hot water and low enthalpy steam generation,” Journal of Renewable and Sustainable Energy, vol. 4, no. 5, Article ID 053103, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. H. M. Güven, F. Mistree, and R. B. Bannerot, “A conceptual basis for the design of parabolic troughs for different design environments,” Journal of Solar Energy Engineering, vol. 108, no. 1, pp. 60–66, 1986. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Clifford and D. Eastwood, “Design of a novel passive solar tracker,” Solar Energy, vol. 77, no. 3, pp. 269–280, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. U. Herrmann and P. Nava, “Performance of the SKAL-ET collector of the andasol power plants,” in Proceedings of the 14th International SolarPACES Symposium on Solar Thermal Concentrating Technologies, Las Vegas, Nev, USA, 2008.
  16. M. Geyer and E. Lupfert, “EUROTROUGH—parabolic trough collector developed for cost efficient solar power generation,” in Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies, Zurich, Switzerland, September 2002.
  17. Centro de Tecnología Educativa (CET), Curso de Energía Solar Tomo III, Centro de Tecnología Educativa (CET), Barcelona, Spain, 1994.
  18. S. A. Kalogirou, “Parabolic trough collector system for low temperature steam generation design and performance characteristics,” Applied Energy, vol. 55, no. 1, pp. 1–19, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. NREL National Renewable Energy Laboratory, SolTrace Optical Modeling Software, 2012,
  20. Tonatiuh—A Monte Carlo ray tracer for the optical simulation of solar concentrating systems, 2012,
  21. ANSI/ASHRAE 93-1986 (RA 91), Methods of Testing to Determine the Thermal Performance of Solar Collectors, American Society of Heating, Refrigerating and Air—Conditioning Engineers, 1993.
  22. W. Weis, AEE INTEC, M. Rommel, and Fraunhofer, Solar Heat for Industrial Processes, Medium Temperature Collectors, State of the Art within Task 33/IV, Subtask C, Solar Heating and cooling Executive Committee of the International Energy Agency (IEA), 2005.
  23. C. Cassapakis and M. Thomas, Inflatable Structures Technology Development Overview, 2015,
  24. O. Y. Carrasquillo De Armas, Design of inflatable solar concentrator [M.S. thesis], Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass, USA, 2013,
  25. M. J. O'Neill, “Inflatable fresnel lens solar concentrator for space power,” US Patent No. 6,111,190 (Filed in 1998).
  26. Cool Earth Solar: Solar Power 2006 Presentation, 2015,
  27. L. M. Murphy and C. Tuan, The Formation of Optical Membrane Reflector Surfaces Using Uniform Pressure Loading, 1987.
  28. C. H. Jenkins, V. D. Kalanovic, K. Padmanabhan, and S. M. Faisal, “Intelligent shape control for precision membrane antennae and reflectors in space,” Smart Materials and Structures, vol. 8, no. 6, pp. 857–867, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. O'Neill and M. F. Piszczor, “Inflatable lenses for space photovoltaic concentrator arrays,” in Proceedings of the Conference Record of the 26th IEEE Photovoltaic Specialists, pp. 853–856, Anaheim, Calif, USA, October 1997. View at Publisher · View at Google Scholar
  30. F. H. Redell, J. Kleber, D. Lichodziejewski, and G. Greschik, “Inflatable-rigidizable solar concentrators for space power applications,” in Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 1–10, Austin, Tex, USA, April 2005. View at Publisher · View at Google Scholar
  31. T. Deyle, Inflatable Membrane Solar Concentration Systems for Space-Based Applications, 2015,