Table of Contents
International Journal of Partial Differential Equations
Volume 2013, Article ID 476873, 13 pages
http://dx.doi.org/10.1155/2013/476873
Research Article

A Numerical Method for Solving 3D Elasticity Equations with Sharp-Edged Interfaces

1Department of Mathematics, College of Science, China University of Petroleum, Beijing 102249, China
2Department of Mathematics and Statistics, Louisiana Tech University, Ruston, LA 71272, USA

Received 11 April 2013; Revised 16 June 2013; Accepted 25 June 2013

Academic Editor: Yuri N. Skiba

Copyright © 2013 Liqun Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Lin, D. Sheen, and X. Zhang, “A locking-free immersed finite element method for planar elasticity interface problems,” Journal of Computational Physics, vol. 247, pp. 228–247, 2013. View at Google Scholar
  2. H.-J. Jou, P. H. Leo, and J. S. Lowengrub, “Microstructural evolution in inhomogeneous elastic media,” Journal of Computational Physics, vol. 131, no. 1, pp. 109–148, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Gao, Y. Huang, and F. F. Abraham, “Continuum and atomistic studies of intersonic crack propagation,” Journal of the Mechanics and Physics of Solids, vol. 49, no. 9, pp. 2113–2132, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Grisvard, Elliptic Problems in Nonsmooth Domains—Monographs and Studies in Mathematics, Pitman Advanced Publishing Program, 1985.
  5. A. Quarteroni, Numerical Models for Differential Problems, Springer, Berlin, Germany, 2009.
  6. A. Quarteroni and R. Sacco, Numerical Approximation of Partial Differential Equations, Springer, Berlin, Germany, 1994.
  7. R. H. Nochetto, M. Paolini, and C. Verdi, “An adaptive finite element method for two-phase stefan problem in two space dimensions, part II: implementation and numerical experiments,” SIAM Journal on Scientific and Statistical Computing, vol. 12, pp. 1207–1244, 1991. View at Google Scholar
  8. A. Schmidt, “Computation of three dimensional dendrites with finite elements,” Journal of Computational Physics, vol. 125, no. 2, pp. 293–312, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. C. S. Peskin, “Numerical analysis of blood flow in the heart,” Journal of Computational Physics, vol. 25, no. 3, pp. 220–252, 1977. View at Google Scholar · View at Scopus
  10. C. S. Peskin, “Improved volume conservation in the computation of flows with immersed elastic boundaries,” Journal of Computational Physics, vol. 105, no. 1, pp. 33–46, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Sussman, “A level set approach for computing solutions to incompressible two-phase flow,” Journal of Computational Physics, vol. 114, no. 1, pp. 146–159, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. R. J. Leveque and Z. Li, “Immersed interface method for elliptic equations with discontinuous coefficients and singular sources,” SIAM Journal on Numerical Analysis, vol. 31, no. 4, pp. 1019–1044, 1994. View at Google Scholar · View at Scopus
  13. Y. C. Zhou, S. Zhao, M. Feig, and G. W. Wei, “High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources,” Journal of Computational Physics, vol. 213, no. 1, pp. 1–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Yu, Y. Zhou, and G. W. Wei, “Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces,” Journal of Computational Physics, vol. 224, no. 2, pp. 729–756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S. N. Yu and G. W. Wei, “Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities,” Journal of Computational Physics, vol. 227, pp. 602–632, 2007. View at Google Scholar
  16. Z. Li, T. Lin, and X. Wu, “New Cartesian grid methods for interface problems using the finite element formulation,” Numerische Mathematik, vol. 96, no. 1, pp. 61–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Gong, B. Li, and Z. Li, “Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions,” SIAM Journal on Numerical Analysis, vol. 46, no. 1, pp. 472–495, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Chen, Y. Xiao, and L. Zhang, “The adaptive immersed interface finite element method for elliptic and Maxwell interface problems,” Journal of Computational Physics, vol. 228, no. 14, pp. 5000–5019, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Moës, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” International Journal for Numerical Methods in Engineering, vol. 46, no. 1, pp. 131–150, 1999. View at Google Scholar · View at Scopus
  20. G. J. Wagner, N. Moës, W. K. Liu, and T. Belytschko, “The extended finite element method for rigid particles in Stokes flow,” International Journal for Numerical Methods in Engineering, vol. 51, no. 3, pp. 293–313, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Chessa and T. Belytschko, “An extended finite element method for two-phase fluids,” Journal of Applied Mechanics, vol. 70, no. 1, pp. 10–17, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Yang, B. Li, and Z. Li, “The immersed interface method for elasticity problems with interfaces,” Dynamics of Continuous, Discrete and Impulsive Systems A, vol. 10, no. 5, pp. 783–808, 2003. View at Google Scholar · View at Scopus
  23. X. Yang, Immersed interface method for elasticity problems with interfaces [Ph.D. thesis], North Carolina State University.
  24. Y. Gong and Z. Li, “Immersed interface finite element methods for elasticity interface problems with non-homogeneous jump conditions,” Numerical Mathematics, vol. 3, no. 1, pp. 23–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Oevermann, C. Scharfenberg, and R. Klein, “A sharp interface finite volume method for elliptic equations on Cartesian grids,” Journal of Computational Physics, vol. 228, no. 14, pp. 5184–5206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Bedrossian, J. H. von Brecht, S. Zhu, E. Sifakis, and J. M. Teran, “A second order virtual node method for elliptic problems with interfaces and irregular domains,” Journal of Computational Physics, vol. 229, no. 18, pp. 6405–6426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Hou, Z. Li, L. Wang, and W. Wang, “A numerical method for solving elasticity equations with interfaces,” Communications in Computational Physics, vol. 12, no. 2, pp. 595–612, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Hou, W. Wang, and L. Wang, “Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces,” Journal of Computational Physics, vol. 229, no. 19, pp. 7162–7179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Hou, L. Wang, and W. Wang, “A numerical method for solving the elliptic interface problems with multi-domains and triple junction points,” Journal of Computational Mathematics, vol. 30, no. 5, pp. 504–516, 2012. View at Google Scholar
  30. S. Hou, P. Song, L. Wang, and H. Zhao, “A weak formulation for solving elliptic interface problems without body fitted grid,” Journal of Computational Physics, vol. 249, pp. 80–95, 2013. View at Google Scholar
  31. S. Hou and X.-D. Liu, “A numerical method for solving variable coefficient elliptic equation with interfaces,” Journal of Computational Physics, vol. 202, no. 2, pp. 411–445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Necas, Introduction to the Theory of Nonlinear Elliptic Equations, Teubner-Texte zur Mathematik, Band 52, 1983.
  33. X. U.-D. Liu and T. C. Sideris, “Convergence of the ghost fluid method for elliptic equations with interfaces,” Mathematics of Computation, vol. 72, no. 244, pp. 1731–1746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. X.-D. Liu, R. P. Fedkiw, and M. Kang, “A boundary condition capturing method for Poisson’s equation on irregular domains,” Journal of Computational Physics, vol. 160, no. 1, pp. 151–178, 2000. View at Publisher · View at Google Scholar · View at Scopus