Table of Contents Author Guidelines Submit a Manuscript
International Journal of Pediatrics
Volume 2010 (2010), Article ID 401323, 9 pages
http://dx.doi.org/10.1155/2010/401323
Review Article

Causes and Mechanisms of Intrauterine Hypoxia and Its Impact on the Fetal Cardiovascular System: A Review

1Pediatric Critical Care Medicine and Pediatric Cardiology, University Children's Hospital, 3010 Berne, Switzerland
2Department of Obstetrics & Gynecology, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5
3Division of Cardiology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8

Received 18 March 2010; Revised 4 August 2010; Accepted 16 September 2010

Academic Editor: Anita J. Moon-Grady

Copyright © 2010 Damian Hutter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. V. Ananth and A. M. Vintzileos, “Epidemiology of preterm birth and its clinical subtypes,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 19, no. 12, pp. 773–782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Irving, J. J. Lysiak, C. H. Graham, S. Hearn, V. K. M. Han, and P. K. Lala, “Characteristics of trophoblast cells migrating from first trimester chorionic villus explants and propagated in culture,” Placenta, vol. 16, no. 5, pp. 413–433, 1995. View at Google Scholar · View at Scopus
  3. G. J. Burton, E. Jauniaux, and A. L. Watson, “Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited,” American Journal of Obstetrics and Gynecology, vol. 181, no. 3, pp. 718–724, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Jauniaux, N. Greenwold, J. Hempstock, and G. J. Burton, “Comparison of ultrasonographic and Doppler mapping of the intervillous circulation in normal and abnormal early pregnancies,” Fertility and Sterility, vol. 79, no. 1, pp. 100–106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Jauniaux, D. Jurkovic, S. Campbell, and J. Hustin, “Doppler ultrasonographic features of the developing placental circulation: correlation with anatomic findings,” American Journal of Obstetrics and Gynecology, vol. 166, no. 2, pp. 585–587, 1992. View at Google Scholar · View at Scopus
  6. F. Rodesch, P. Simon, C. Donner, and E. Jauniaux, “Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy,” Obstetrics and Gynecology, vol. 80, no. 2, pp. 283–285, 1992. View at Google Scholar · View at Scopus
  7. E. Jauniaux, A. L. Watson, J. Hempstock, Y.-P. Bao, J. N. Skepper, and G. J. Burton, “Onset of maternal arterial blood flow and placental oxidative stress: a possible factor in human early pregnancy failure,” American Journal of Pathology, vol. 157, no. 6, pp. 2111–2122, 2000. View at Google Scholar · View at Scopus
  8. A. L. Watson, J. N. Skepper, E. Jauniaux, and G. J. Burton, “Susceptibility of human placental syncytiotrophoblastic mitochondria to oxygen-mediated damage in relation to gestational age,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 5, pp. 1697–1705, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. S. K. Palmer, S. Zamudio, C. Coffin, S. Parker, E. Stamm, and L. G. Moore, “Quantitative estimation of human uterine artery blood flow and pelvic blood flow redistribution in pregnancy,” Obstetrics and Gynecology, vol. 80, no. 6, pp. 1000–1006, 1992. View at Google Scholar · View at Scopus
  10. M. A. Cadnapaphornchai, M. Ohara, K. G. Morris Jr. et al., “Chronic NOS inhibition reverses systemic vasodilation and glomerular hyperfiltration in pregnancy,” American Journal of Physiology, vol. 280, no. 4, pp. F592–F598, 2001. View at Google Scholar · View at Scopus
  11. A. B. Chapman, W. T. Abraham, S. Zamudio et al., “Temporal relationships between hormonal and hemodynamic changes in early human pregnancy,” Kidney International, vol. 54, no. 6, pp. 2056–2063, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Furuhashi, H. Kimura, H. Nagae, and A. Yajima, “Maternal plasma endothelin levels and fetal status in normal and preecramptic pregnancies,” Gynecologic and Obstetric Investigation, vol. 39, no. 2, pp. 88–92, 1995. View at Google Scholar
  13. R. R. Magness, “Maternal cardiovascular and other physiologic responses to the endocrinology of pregnancy,” in The Endocrinology of Pregnancy, F. W. Bazer, Ed., pp. 507–539, Humana Press, Totowas, NJ, USA, 1998. View at Google Scholar
  14. A. E. Abbas, S. J. Lester, and H. Connolly, “Pregnancy and the cardiovascular system,” International Journal of Cardiology, vol. 98, no. 2, pp. 179–189, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. R. D. Miller, Anesthesia, Churchill Livingston, Philadelphia, Pa, USA, 5th edition, 2000.
  16. S. C. Siu and J. M. Colman, “Congenital heart disease: heart disease and pregnancy,” Heart, vol. 85, no. 6, pp. 710–715, 2001. View at Google Scholar · View at Scopus
  17. X.-Q. Hu, S. Yang, W. J. Pearce, L. D. Longo, and L. Zhang, “Effect of chronic hypoxia on alpha-1 adrenoceptor-mediated inositol 1,4,5-trisphosphate signaling in ovine uterine artery,” Journal of Pharmacology and Experimental Therapeutics, vol. 288, no. 3, pp. 977–983, 1999. View at Google Scholar · View at Scopus
  18. S. Mateev, A. H. Sillau, R. Mouser et al., “Chronic hypoxia opposes pregnancy-induced increase in uterine artery vasodilator response to flow,” American Journal of Physiology, vol. 284, no. 3, pp. H820–H829, 2003. View at Google Scholar · View at Scopus
  19. D. Xiao, X. Huang, S. Bae, C. A. Ducsay, and L. Zhang, “Cortisol-mediated potentiation of uterine artery contractility: effect of pregnancy,” American Journal of Physiology, vol. 283, no. 1, pp. H238–H246, 2002. View at Google Scholar · View at Scopus
  20. L. E. Keyes, L. G. Moore, S. J. Walchak, and E. C. Dempsey, “Pregnancy-stimulated growth of vascular smooth muscle cells: importance of protein kinase C-dependent synergy between estrogen and platelet-derived growth factor,” Journal of Cellular Physiology, vol. 166, no. 1, pp. 22–32, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. Mulvany, G. L. Baumbach, C. Aalkjaer et al., “Vascular remodeling,” Hypertension, vol. 28, no. 3, pp. 505–506, 1996. View at Google Scholar · View at Scopus
  22. Y. Ni, V. May, K. Braas, and G. Osol, “Pregnancy augments uteroplacental vascular endothelial growth factor gene expression and vasodilator effects,” American Journal of Physiology, vol. 273, no. 2, pp. H938–H944, 1997. View at Google Scholar · View at Scopus
  23. J. Männer, J. M. Pérez-Pomares, D. Macías, and R. Muñoz-Chápuli, “The origin, formation and developmental significance of the epicardium: a review,” Cells Tissues Organs, vol. 169, no. 2, pp. 89–103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Männer, “Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium,” Anatomical Record, vol. 255, no. 2, pp. 212–226, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Männer, “Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process,” Anatomical Record, vol. 259, no. 3, pp. 248–262, 2000. View at Publisher · View at Google Scholar
  26. V. M. Christoffels, P. E. M. H. Habets, D. Franco et al., “Chamber formation and morphogenesis in the developing mammalian heart,” Developmental Biology, vol. 223, no. 2, pp. 266–278, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Webb, M. Kanani, R. H. Anderson, M. K. Richardson, and N. A. Brown, “Development of the human pulmonary vein and its incorporation in the morphologically left atrium,” Cardiology in the Young, vol. 11, no. 6, pp. 632–642, 2001. View at Google Scholar · View at Scopus
  28. A. Wessels, R. H. Anderson, R. R. Markwald et al., “Atrial development in the human heart: an immunohistochemical study with emphasis on the role of mesenchymal tissues,” Anatomical Record, vol. 259, no. 3, pp. 288–300, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. J. C. P. Kingdom and P. Kaufmann, “Oxygen and placental villous development: origins of fetal hypoxia,” Placenta, vol. 18, no. 8, pp. 613–621, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. G. M. Jensen and L. G. Moore, “The effect of high altitude and other risk factors on birthweight: independent or interactive effects?” American Journal of Public Health, vol. 87, no. 6, pp. 1003–1007, 1997. View at Google Scholar · View at Scopus
  31. D. A. Giussani, P. S. Phillips, S. Anstee, and D. J. P. Barker, “Effects of altitude versus economic status on birth weight and body shape at birth,” Pediatric Research, vol. 49, no. 4, pp. 490–494, 2001. View at Google Scholar · View at Scopus
  32. J. P. Mortola, P. B. Frappell, L. Aguero, and K. Armstrong, “Birth weight and altitude: a study in Peruvian communities,” Journal of Pediatrics, vol. 136, no. 3, pp. 324–329, 2000. View at Google Scholar · View at Scopus
  33. E. Krampl, C. Lees, J. M. Bland, J. E. Dorado, G. Moscoso, and S. Campbell, “Fetal biometry at 4300 m compared to sea level in Peru,” Ultrasound in Obstetrics and Gynecology, vol. 16, no. 1, pp. 9–18, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. L. E. Keyes, J. F. Armaza, S. Niermeyer, E. Vargas, D. A. Young, and L. G. Moore, “Intrauterine growth restriction, preeclampsia, and intrauterine mortality at high altitude in Bolivia,” Pediatric Research, vol. 54, no. 1, pp. 20–25, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Sibai, G. Dekker, and M. Kupferminc, “Pre-eclampsia,” The Lancet, vol. 365, no. 9461, pp. 785–799, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. K. Palmer, L. G. Moore, D. A. Young, B. Cregger, J. C. Berman, and S. Zamudio, “Altered blood pressure course during normal pregnancy and increased preeclampsia at high altitude (3100 meters) in Colorado,” American Journal of Obstetrics and Gynecology, vol. 180, no. 5, pp. 1161–1168, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. L. G. Moore, D. W. Hershey, D. Jahnigen, and W. Bowes Jr., “The incidence of pregnancy-induced hypertension is increased among Colorado residents at high altitude,” American Journal of Obstetrics and Gynecology, vol. 144, no. 4, pp. 423–429, 1982. View at Google Scholar · View at Scopus
  38. X.-Q. Hu, L. D. Longo, R. D. Gilbert, and L. Zhang, “Effects of long-term high-altitude hypoxemia on α1-adrenergic receptors in the ovine uterine artery,” American Journal of Physiology, vol. 270, no. 3, pp. H1001–H1007, 1996. View at Google Scholar · View at Scopus
  39. S. N. Mateev, R. Mouser, D. A. Young, R. P. Mecham, and L. G. Moore, “Chronic hypoxia augments uterine artery distensibility and alters the circumferential wall stress-strain relationship during pregnancy,” Journal of Applied Physiology, vol. 100, no. 6, pp. 1842–1850, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Zhang, D. Xiao, and X. Hu, “Effect of cGMP on pharmacomechanical coupling in the uterine artery of near-term pregnant sheep,” Journal of Pharmacology and Experimental Therapeutics, vol. 327, no. 2, pp. 425–431, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. J. L. James, P. R. Stone, and L. W. Chamley, “The regulation of trophoblast differentiation by oxygen in the first trimester of pregnancy,” Human Reproduction Update, vol. 12, no. 2, pp. 137–144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Kitanaka, R. D. Gilbert, and L. D. Longo, “Maternal responses to long-term hypoxemia in sheep,” American Journal of Physiology, vol. 256, no. 6, part 2, pp. R1340–R1347, 1989. View at Google Scholar · View at Scopus
  43. N. A. Kametas, F. McAuliffe, E. Krampl, J. Chambers, and K. H. Nicolaides, “Maternal cardiac function during pregnancy at high altitude,” BJOG, vol. 111, no. 10, pp. 1051–1058, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Zamudio, S. K. Palmer, T. Droma, E. Stamm, C. Coffin, and L. G. Moore, “Effect of altitude on uterine artery blood flow during normal pregnancy,” Journal of Applied Physiology, vol. 79, no. 1, pp. 7–14, 1995. View at Google Scholar · View at Scopus
  45. L. G. Moore, D. Young, R. E. McCullough, T. Droma, and S. Zamudio, “Tibetan protection from intrauterine growth restriction (IUGR) and reproductive loss at high altitude,” American Journal of Human Biology, vol. 13, no. 5, pp. 635–644, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. C. G. Julian, M. J. Wilson, M. Lopez et al., “Augmented uterine artery blood flow and oxygen delivery protect Andeans from altitude-associated reductions in fetal growth,” American Journal of Physiology, vol. 296, no. 5, pp. R1564–R1575, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. S. C. Siu, J. M. Colman, S. Sorensen et al., “Adverse neonatal and cardiac outcomes are more common in pregnant women with cardiac disease,” Circulation, vol. 105, no. 18, pp. 2179–2184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. S. C. Siu, M. Sermer, J. M. Colman et al., “Prospective multicenter study of pregnancy outcomes in women with heart disease,” Circulation, vol. 104, no. 5, pp. 515–521, 2001. View at Google Scholar · View at Scopus
  49. A. Hameed, I. S. Karaalp, P. P. Tummala et al., “The effect of valvular heart disease on maternal and fetal outcome of pregnancy,” Journal of the American College of Cardiology, vol. 37, no. 3, pp. 893–899, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Presbitero, J. Somerville, S. Stone, E. Aruta, D. Spiegelhalter, and F. Rabajoli, “Pregnancy in cyanotic congenital heart disease: outcome of mother and fetus,” Circulation, vol. 89, no. 6, pp. 2673–2676, 1994. View at Google Scholar · View at Scopus
  51. J. S. Sellman and R. L. Holman, “Thromboembolism during pregnancy: risks, challenges, and recommendations,” Postgraduate Medicine, vol. 108, no. 4, pp. 71–84, 2000. View at Google Scholar · View at Scopus
  52. “ACOG technical bulletin. Pulmonary disease in pregnancy. Number 224—June 1996. American College of Obstetricians and Gynecologists,” International Journal of Gynaecology and Obstetrics, vol. 54, no. 2, pp. 187–196, 1996. View at Scopus
  53. R. Kumar, “Prenatal factors and the development of asthma,” Current Opinion in Pediatrics, vol. 20, no. 6, pp. 682–687, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. E. S. Guy, A. Kirumaki, and N. A. Hanania, “Acute asthma in pregnancy,” Critical Care Clinics, vol. 20, no. 4, pp. 731–745, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. L. D. Inge and J. W. Wilson, “Update on the treatment of tuberculosis,” American Family Physician, vol. 78, no. 4, pp. 457–470, 2008. View at Google Scholar · View at Scopus
  56. S. M. Rowe, S. Miller, and E. J. Sorscher, “Cystic fibrosis,” The New England Journal of Medicine, vol. 352, no. 19, pp. 1992–2001, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Y. Cheng, C. H. Goss, E. F. McKone et al., “Aggressive prenatal care results in successful fetal outcomes in CF women,” Journal of Cystic Fibrosis, vol. 5, no. 2, pp. 85–91, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. I. Ødegaard, B. Stray-Pedersen, K. Hallberg, O. C. Haanaes, O. T. Storrøsten, and M. Johannesson, “Maternal and fetal morbidity in pregnancies of Norwegian and Swedish women with cystic fibrosis,” Acta Obstetricia et Gynecologica Scandinavica, vol. 81, no. 8, pp. 698–705, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Rosenberg, “The IUGR newborn,” Seminars in Perinatology, vol. 32, no. 3, pp. 219–224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. C. H. Goss, G. D. Rubenfeld, K. Otto, and M. L. Aitken, “The effect of pregnancy on survival in women with cystic fibrosis,” Chest, vol. 124, no. 4, pp. 1460–1468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. D. S. Hardin, J. Rice, R. C. Cohen, K. J. Ellis, and J. A. Nick, “The metabolic effects of pregnancy in cystic fibrosis,” Obstetrics and Gynecology, vol. 106, no. 2, pp. 367–375, 2005. View at Google Scholar · View at Scopus
  62. S. W. McColgin, L. Glee, and B. A. Brian, “Pulmonary disorders complicating pregnancy,” Obstetrics and Gynecology Clinics of North America, vol. 19, no. 4, pp. 697–717, 1992. View at Google Scholar · View at Scopus
  63. J. M. Shapiro, “Critical care of the obstetric patient,” Journal of Intensive Care Medicine, vol. 21, no. 5, pp. 278–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Mahajan, R. Aalinkeel, P. Shah, S. Singh, and N. Kochupillai, “Nutritional anaemia dysregulates endocrine control of fetal growth,” British Journal of Nutrition, vol. 100, no. 2, pp. 408–417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. P. N. Singla, M. Tyagi, A. Kumar, D. Dash, and R. Shankar, “Fetal growth in maternal anaemia,” Journal of Tropical Pediatrics, vol. 43, no. 2, pp. 89–92, 1997. View at Google Scholar · View at Scopus
  66. P. N. Baker, S. J. Wheeler, T. A. Sanders et al., “A prospective study of micronutrient status in adolescent pregnancy,” American Journal of Clinical Nutrition, vol. 89, no. 4, pp. 1114–1124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. L. H. Allen, “Pregnancy and iron deficiency: unresolved issues,” Nutrition Reviews, vol. 55, no. 4, pp. 91–101, 1997. View at Google Scholar · View at Scopus
  68. D. J. P. Barker, A. R. Bull, C. Osmond, and S. J. Simmonds, “Fetal and placental size and risk of hypertension in adult life,” British Medical Journal, vol. 301, no. 6746, pp. 259–262, 1990. View at Google Scholar · View at Scopus
  69. T. T. Lao and W. M. Wong, “Placental ratio—its relationship with mild maternal anaemia,” Placenta, vol. 18, no. 7, pp. 593–596, 1997. View at Publisher · View at Google Scholar · View at Scopus
  70. L. A. Williams, S. F. Evans, and J. P. Newnham, “Prospective cohort study of factors influencing the relative weights of the placenta and the newborn infant,” British Medical Journal, vol. 314, no. 7098, pp. 1864–1868, 1997. View at Google Scholar · View at Scopus
  71. S. C. Davies, E. Cronin, M. Gill, P. Greengross, M. Hickman, and C. Normand, “Screening for sickle cell disease and thalassaemia: a systematic review with supplementary research,” Health Technology Assessment, vol. 4, no. 3, pp. 1–87, 2000. View at Google Scholar · View at Scopus
  72. A. G. Motulsky, “Frequency of sickling disorders in U.S. blacks,” The New England Journal of Medicine, vol. 288, no. 1, pp. 31–33, 1973. View at Google Scholar · View at Scopus
  73. “ACOG practice bulletin no. 78: hemoglobinopathies in pregnancy,” Obstetrics and Gynecology, vol. 109, no. 1, pp. 229–238, 2007. View at Scopus
  74. P. M. Sun, W. Wilburn, B. D. Raynor, and D. Jamieson, “Sickle cell disease in pregnancy: twenty years of experience at Grady Memorial Hospital, Atlanta, Georgia,” American Journal of Obstetrics and Gynecology, vol. 184, no. 6, pp. 1127–1130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Koshy, L. Burd, D. Wallace, A. Moawad, and J. Baron, “Prophylactic red-cell transfusions in pregnant patients with sickle cell disease. A randomized cooperative study,” The New England Journal of Medicine, vol. 319, no. 22, pp. 1447–1452, 1988. View at Google Scholar · View at Scopus
  76. H. H. Kazazian Jr., “The thalassemia syndromes: molecular basis and prenatal diagnosis in 1990,” Seminars in Hematology, vol. 27, no. 3, pp. 209–228, 1990. View at Google Scholar · View at Scopus
  77. A. Aessopos, F. Karabatsos, D. Farmakis et al., “Pregnancy in patients with well-treated β-thalassemia: outcome for mothers and newborn infants,” American Journal of Obstetrics and Gynecology, vol. 180, no. 2, part 1, pp. 360–365, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. C. E. Jensen, S. M. Tuck, and B. Wonke, “Fertility in β thalassaemia major: a report of 16 pregnancies, preconceptual evaluation and a review of the literature,” British Journal of Obstetrics and Gynaecology, vol. 102, no. 8, pp. 625–629, 1995. View at Google Scholar · View at Scopus
  79. H. C. Ong, J. C. White, and T. A. Sinnathuray, “Haemoglobin H disease and pregnancy in a Malaysian woman,” Acta Haematologica, vol. 58, no. 4, pp. 229–233, 1977. View at Google Scholar · View at Scopus
  80. J. E. Ramsay, F. Stewart, I. A. Greer, and N. Sattar, “Microvascular dysfunction: a link between pre-eclampsia and maternal coronary heart disease,” BJOG, vol. 110, no. 11, pp. 1029–1031, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. B. J. Wilson, M. S. Watson, G. J. Prescott et al., “Hypertensive diseases of pregnancy and risk of hypertension and stroke in later life: results from cohort study,” British Medical Journal, vol. 326, no. 7394, pp. 845–849, 2003. View at Google Scholar · View at Scopus
  82. L. Haukkamaa, M. Salminen, H. Laivuori, H. Leinonen, V. Hiilesmaa, and R. Kaaja, “Risk for subsequent coronary artery disease after preeclampsia,” American Journal of Cardiology, vol. 93, no. 6, pp. 805–808, 2004. View at Publisher · View at Google Scholar
  83. D. J. P. Barker, “Growth in utero and coronary heart disease,” Nutrition Reviews, vol. 54, no. 2, pp. S1–S7, 1996. View at Google Scholar
  84. D. J. P. Barker, C. Osmond, J. Golding, D. Kuh, and M. E. J. Wadsworth, “Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease,” British Medical Journal, vol. 298, no. 6673, pp. 564–567, 1989. View at Google Scholar · View at Scopus
  85. D. J. P. Barker, A. W. Shiell, M. E. Barker, and C. M. Law, “Growth in utero and blood pressure levels in the next generation,” Journal of Hypertension, vol. 18, no. 7, pp. 843–846, 2000. View at Google Scholar · View at Scopus
  86. E. A. Herrera, V. M. Pulgar, R. A. Riquelme et al., “High-altitude chronic hypoxia during gestation and after birth modifies cardiovascular responses in newborn sheep,” American Journal of Physiology, vol. 292, no. 6, pp. R2234–R2240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. C. N. Martyn, D. J. P. Barker, S. Jespersen, S. Greenwald, C. Osmond, and C. Berry, “Growth in utero, adult blood pressure, and arterial compliance,” British Heart Journal, vol. 73, no. 2, pp. 116–121, 1995. View at Google Scholar · View at Scopus
  88. C. Sartori, Y. Allemann, L. Trueb, A. Delabays, P. Nicod, and U. Scherrer, “Augmented vasoreactivity in adult life associated with perinatal vascular insult,” The Lancet, vol. 353, no. 9171, pp. 2205–2207, 1999. View at Publisher · View at Google Scholar · View at Scopus
  89. R. B. Ness and B. M. Sibai, “Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia,” American Journal of Obstetrics and Gynecology, vol. 195, no. 1, pp. 40–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. J. G. Ray, M. J. Vermeulen, M. J. Schull, and D. A. Redelmeier, “Cardiovascular health after maternal placental syndromes (CHAMPS): population-based retrospective cohort study,” The Lancet, vol. 366, no. 9499, pp. 1797–1803, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Y. Lausman, J. C. Kingdom, T. J. Bradley, C. Slorach, and J. G. Ray, “Subclinical atherosclerosis in association with elevated placental vascular resistance in early pregnancy,” Atherosclerosis, vol. 206, no. 1, pp. 33–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. E. J. Roccella, “Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy,” American Journal of Obstetrics and Gynecology, vol. 183, no. 1, pp. S1–S22, 2000. View at Google Scholar · View at Scopus
  93. B. M. Sibai, “Diagnosis and management of gestational hypertension and preeclampsia,” Obstetrics and Gynecology, vol. 102, no. 1, pp. 181–192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. K. A. Douglas and C. W. G. Redman, “Eclampsia in the United Kingdom,” British Medical Journal, vol. 309, no. 6966, pp. 1395–1400, 1994. View at Google Scholar · View at Scopus
  95. B. M. Sibai, “Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count,” Obstetrics and Gynecology, vol. 103, no. 5, part 1, pp. 981–991, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. C. W. G. Redman, “Platelets and the beginnings of preeclampsia,” The New England Journal of Medicine, vol. 323, no. 7, pp. 478–480, 1990. View at Google Scholar · View at Scopus
  97. J. C. Hauth, M. G. Ewell, R. J. Levine et al., “Pregnancy outcomes in healthy nulliparas who developed hypertension,” Obstetrics and Gynecology, vol. 95, no. 1, pp. 24–28, 2000. View at Publisher · View at Google Scholar
  98. M. D. Hnat, B. M. Sibai, S. Caritis et al., “Perinatal outcome in women with recurrent preeclampsia compared with women who develop preeclampsia as nulliparas,” American Journal of Obstetrics and Gynecology, vol. 186, no. 3, pp. 422–426, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Buchbinder, B. M. Sibai, S. Caritis et al., “Adverse perinatal outcomes are significantly higher in severe gestational hypertension than in mild preeclampsia,” American Journal of Obstetrics and Gynecology, vol. 186, no. 1, pp. 66–71, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Zhang, S. Meikle, and A. Trumble, “Severe maternal morbidity associated with hypertensive disorders in pregnancy in the United States,” Hypertension in Pregnancy, vol. 22, no. 2, pp. 203–212, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. P.-Y. Jayet, S. F. Rimoldi, T. Stuber et al., “Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia,” Circulation, vol. 122, no. 5, pp. 488–494, 2010. View at Publisher · View at Google Scholar
  102. R. N. Pollack and M. Y. Divon, “Intrauterine growth retardation: definition, classification, and etiology,” Clinical Obstetrics and Gynecology, vol. 35, no. 1, pp. 99–107, 1992. View at Google Scholar · View at Scopus
  103. K. Meyer and L. Zhang, “Fetal programming of cardiac function and disease,” Reproductive Sciences, vol. 14, no. 3, pp. 209–216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. W. S. Webster and D. Abela, “The effect of hypoxia in development,” Birth Defects Research Part C, vol. 81, no. 3, pp. 215–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. L. Zhang, “Prenatal hypoxia and cardiac programming,” Journal of the Society for Gynecologic Investigation, vol. 12, no. 1, pp. 2–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. W. Al-Ghazali, S. K. Chita, M. G. Chapman, and L. D. Allan, “Evidence of redistribution of cardiac output in asymmetrical growth retardation,” British Journal of Obstetrics and Gynaecology, vol. 96, no. 6, pp. 697–704, 1989. View at Google Scholar · View at Scopus
  107. G. Rizzo, D. Arduini, and C. Romanini, “Doppler echocardiographic assessment of fetal cardiac function,” Ultrasound in Obstetrics and Gynecology, vol. 2, no. 6, pp. 434–445, 1992. View at Google Scholar
  108. J.-C. Fouron, A. Skoll, S.-E. Sonesson, M. Pfizenmaier, E. Jaeggi, and M. Lessard, “Relationship between flow through the fetal aortic isthmus and cerebral oxygenation during acute placental circulatory insufficiency in ovine fetuses,” American Journal of Obstetrics and Gynecology, vol. 181, no. 5, pp. 1102–1107, 1999. View at Publisher · View at Google Scholar
  109. J. W. Wladimiroff, H. M. Tonge, and P. A. Stewart, “Doppler ultrasound assessment of cerebral blood flow in the human fetus,” British Journal of Obstetrics and Gynaecology, vol. 93, no. 5, pp. 471–475, 1986. View at Google Scholar · View at Scopus
  110. J.-C. Fouron, G. Teyssier, E. Maroto, M. Lessard, and G. Marquette, “Diastolic circulatory dynamics in the presence of elevated placental resistance and retrograde diastolic flow in the umbilical artery: a Doppler echographic study in lambs,” American Journal of Obstetrics and Gynecology, vol. 164, no. 1, pp. 195–203, 1991. View at Google Scholar · View at Scopus
  111. G. Rizzo and D. Arduini, “Fetal cardiac function in intrauterine growth retardation,” American Journal of Obstetrics and Gynecology, vol. 165, no. 4, pp. 876–882, 1991. View at Google Scholar · View at Scopus
  112. S. Gudmundsson, G. Tulzer, J. C. Huhta, and K. Marsal, “Venous Doppler in the fetus with absent end-diastolic flow in the umbilical artery,” Ultrasound in Obstetrics and Gynecology, vol. 7, no. 4, pp. 262–267, 1996. View at Google Scholar · View at Scopus
  113. V. A. Browne, V. M. Stiffel, W. J. Pearce, L. D. Longo, and R. D. Gilbert, “Cardiac β-adrenergic receptor function in fetal sheep exposed to long-term high-altitude hypoxemia,” American Journal of Physiology, vol. 273, no. 6, pp. R2022–R2031, 1997. View at Google Scholar
  114. V. A. Browne, V. M. Stiffel, W. J. Pearce, L. D. Longo, and R. D. Gilbert, “Activator calcium and myocardial contractility in fetal sheep exposed to long-term high-altitude hypoxia,” American Journal of Physiology, vol. 272, no. 3, part 2, pp. H1196–H1204, 1997. View at Google Scholar · View at Scopus
  115. F. C. Garcia, V. M. Stiffel, W. J. Pearce, L. Zhang, and R. D. Gilbert, “Ca2+ sensitivity of fetal coronary arteries exposed to long-term, high-altitude hypoxia,” Journal of the Society for Gynecologic Investigation, vol. 7, no. 3, pp. 161–166, 2000. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Kamitomo, J. G. Alonso, T. Okai, L. D. Longo, and R. D. Gilbert, “Effects of long-term, high-altitude hypoxemia on ovine fetal cardiac output and blood flow distribution,” American Journal of Obstetrics and Gynecology, vol. 169, no. 3, pp. 701–707, 1993. View at Google Scholar · View at Scopus
  117. L. P. Thompson, “Effects of chronic hypoxia on fetal coronary responses,” High Altitude Medicine and Biology, vol. 4, no. 2, pp. 215–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. D. J. P. Barker, “The fetal origins of adult hypertension,” Journal of Hypertension, vol. 10, no. 7, pp. S39–S44, 1992. View at Google Scholar · View at Scopus
  119. D. J. P. Barker, “Fetal nutrition and cardiovascular disease in later life,” British Medical Bulletin, vol. 53, no. 1, pp. 96–108, 1997. View at Google Scholar · View at Scopus
  120. D. J. P. Barker, P. D. Gluckman, K. M. Godfrey, J. E. Harding, J. A. Owens, and J. S. Robinson, “Fetal nutrition and cardiovascular disease in adult life,” The Lancet, vol. 341, no. 8850, pp. 938–941, 1993. View at Publisher · View at Google Scholar · View at Scopus
  121. D. J. Barker, “The fetal origins of coronary heart disease,” European Heart Journal, vol. 18, no. 6, pp. 883–884, 1997. View at Google Scholar
  122. D. J. P. Barker, “In utero programming of chronic disease,” Clinical Science, vol. 95, no. 2, pp. 115–128, 1998. View at Google Scholar · View at Scopus
  123. D. J. P. Barker, “In utero programming of cardiovascular disease,” Theriogenology, vol. 53, no. 2, pp. 555–574, 2000. View at Publisher · View at Google Scholar · View at Scopus
  124. D. J. P. Barker, S. P. Bagby, and M. A. Hanson, “Mechanisms of disease: in utero programming in the pathogenesis of hypertension,” Nature Clinical Practice Nephrology, vol. 2, no. 12, pp. 700–707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. D. A. Leon, H. O. Lithell, D. Vågerö et al., “Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915–1929,” British Medical Journal, vol. 317, no. 7153, pp. 241–245, 1998. View at Google Scholar
  126. A.-K. E. Bonamy, A. Bendito, H. Martin, E. Andolf, G. Sedin, and M. Norman, “Preterm birth contributes to increased vascular resistance and higher blood pressure in adolescent girls,” Pediatric Research, vol. 58, no. 5, pp. 845–849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Johansson, A. Iliadou, N. Bergvall, T. Tuvemo, M. Norman, and S. Cnattingius, “Risk of high blood pressure among young men increases with the degree of immaturity at birth,” Circulation, vol. 112, no. 22, pp. 3430–3436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. H. Martin, J. Hu, G. Gennser, and M. Norman, “Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birthweight,” Circulation, vol. 102, no. 22, pp. 2739–2744, 2000. View at Google Scholar · View at Scopus
  129. S. Lewington, R. Clarke, N. Qizilbash, R. Peto, and R. Collins, “Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies,” The Lancet, vol. 360, no. 9349, pp. 1903–1913, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. L. Blais and M.-F. Beauchesne, “Use of inhaled corticosteroids following discharge from an emergency department for an acute exacerbation of asthma,” Thorax, vol. 59, no. 11, pp. 943–947, 2004. View at Publisher · View at Google Scholar · View at Scopus
  131. S. Bae, Y. Xiao, G. Li, C. A. Casiano, and L. Zhang, “Effect of maternal chronic hypoxic exposure during gestation on apoptosis in fetal rat heart,” American Journal of Physiology, vol. 285, no. 3, pp. H983–H990, 2003. View at Google Scholar · View at Scopus
  132. L. H. E. H. Snoeckx, R. N. Cornelussen, F. A. van Nieuwenhoven, R. S. Reneman, and G. J. van der Vusse, “Heat shock proteins and cardiovascular pathophysiology,” Physiological Reviews, vol. 81, no. 4, pp. 1461–1497, 2001. View at Google Scholar · View at Scopus
  133. L. Xi, D. Tekin, P. Bhargava, and R. C. Kukreja, “Whole body hyperthermia and preconditioning of the heart: basic concepts, complexity, and potential mechanisms,” International Journal of Hyperthermia, vol. 17, no. 5, pp. 439–455, 2001. View at Publisher · View at Google Scholar · View at Scopus
  134. D. M. Yellon, E. Pasini, A. Cargnoni, M. S. Marber, D. S. Latchman, and R. Ferrari, “The protective role of heat stress in the ischaemic and reperfused rabbit myocardium,” Journal of Molecular and Cellular Cardiology, vol. 24, no. 8, pp. 895–907, 1992. View at Publisher · View at Google Scholar · View at Scopus
  135. H. M. Beere and D. R. Green, “Stress management—heat shock protein-70 and the regulation of apoptosis,” Trends in Cell Biology, vol. 11, no. 1, pp. 6–10, 2001. View at Publisher · View at Google Scholar · View at Scopus
  136. J. J. Hutter, R. Mestril, E. K. W. Tam, R. E. Sievers, W. H. Dillmann, and C. L. Wolfe, “Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo,” Circulation, vol. 94, no. 6, pp. 1408–1411, 1996. View at Google Scholar · View at Scopus
  137. J. Jayakumar, K. Suzuki, I. A. Sammut et al., “Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia-reperfusion injury,” Circulation, vol. 104, no. 12, supplement 1, pp. i303–i307, 2001. View at Google Scholar · View at Scopus
  138. G. Li, Y. Xiao, J. L. Estrella, C. A. Ducsay, R. D. Gilbert, and L. Zhang, “Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult rat,” Journal of the Society for Gynecologic Investigation, vol. 10, no. 5, pp. 265–274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  139. L. P. Thompson and Y. Dong, “Chronic hypoxia decreases endothelial nitric oxide synthase protein expression in fetal guinea pig hearts,” Journal of the Society for Gynecologic Investigation, vol. 12, no. 6, pp. 388–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. R.-P. Xiao, “Cell logic for dual coupling of a single class of receptors to Gs and Gi proteins,” Circulation Research, vol. 87, no. 8, pp. 635–637, 2000. View at Google Scholar · View at Scopus
  141. A. Chesley, M. S. Lundberg, T. Asai et al., “The β2-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through Gi-dependent coupling to phosphatidylinositol 3-kinase,” Circulation Research, vol. 87, no. 12, pp. 1172–1179, 2000. View at Google Scholar