Table of Contents Author Guidelines Submit a Manuscript
International Journal of Pediatrics
Volume 2014, Article ID 513460, 7 pages
http://dx.doi.org/10.1155/2014/513460
Clinical Study

Lipid Profile and Correlation to Cardiac Risk Factors and Cardiovascular Function in Type 1 Adolescent Diabetics from a Developing Country

1Department of Paediatrics, Maulana Azad Medical College and Associated Lok Nayak Hospital, Bahadur Shah Zafar Marg, New Delhi 110002, India
2Department of Biochemistry, G. B. Pant Hospital, Jawahar Lal Nehru Marg, New Delhi 110002, India

Received 28 August 2013; Revised 14 April 2014; Accepted 14 April 2014; Published 12 May 2014

Academic Editor: F. J. Kaskel

Copyright © 2014 Aashima Dabas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Järvisalo, A. Putto-Laurila, L. Jartti et al., “Carotid artery intima-media thickness in children with type 1 diabetes,” Diabetes, vol. 51, no. 2, pp. 493–498, 2002. View at Google Scholar · View at Scopus
  2. Z. Milicevic, I. Raz, S. D. Beattie et al., “Natural history of cardiovascular disease in patients with diabetes: role of hyperglycemia,” Diabetes Care, vol. 31, supplement 2, pp. S155–S160, 2008. View at Google Scholar · View at Scopus
  3. The DCCT Research Group, “Lipid and lipoprotein levels in patients with IDDM,” Diabetes Care, vol. 15, no. 7, pp. 886–894, 1991. View at Google Scholar
  4. R. Kawamori, Y. Yamasaki, H. Matsushima et al., “Prevalence of carotid atherosclerosis in diabetic patients: ultrasound high-resolution B-mode imaging on carotid arteries,” Diabetes Care, vol. 15, no. 10, pp. 1290–1294, 1992. View at Google Scholar · View at Scopus
  5. N. Mitsuhashi, T. Onuma, S. Kubo, N. Takayanagi, M. Honda, and R. Kawamori, “Coronary artery disease and carotid artery intima-media thickness in Japanese type 2 diabetic patients,” Diabetes Care, vol. 25, no. 8, pp. 1308–1312, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Lacolley, P. Challande, S. Boumaza et al., “Mechanical properties and structure of carotid arteries in mice lacking desmin,” Cardiovascular Research, vol. 51, no. 1, pp. 178–187, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. World Health Organization, “WHO Child Growth Standards. Methods and development. Department of Nutrition for Health and Development,” WHO, Geneva, Switzerland, S41–S55, 2007, http://www.who.int/childgrowth/standards/en/.
  8. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents, “The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents,” Pediatrics, vol. 114, no. 2, supplement, pp. 555–576, 2004. View at Google Scholar
  9. G. R. Warnick, R. H. Knopp, V. Fitzpatrick, and L. Branson, “Estimating low-density lipoprotein cholesterol by the Friedewald equation is adequate for classifying patients on the basis of nationally recommended cutpoints,” Clinical Chemistry, vol. 36, no. 1, pp. 15–19, 1990. View at Google Scholar · View at Scopus
  10. M. C. Corretti, T. J. Anderson, E. J. Benjamin et al., “Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the international brachial artery reactivity task force,” Journal of the American College of Cardiology, vol. 39, no. 2, pp. 257–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Pauciullo, A. Iannuzzi, R. Sartorio et al., “Increased intima-media thickness of the common carotid artery in hypercholesterolemic children,” Arteriosclerosis and Thrombosis, vol. 14, no. 7, pp. 1075–1079, 1994. View at Google Scholar · View at Scopus
  12. A. Parikh, E. B. Sochett, B. W. McCrindle, A. Dipchand, A. Daneman, and D. Daneman, “Carotid artery distensibility and cardiac function in adolescents with type 1 diabetes,” Journal of Pediatrics, vol. 137, no. 4, pp. 465–469, 2000. View at Google Scholar · View at Scopus
  13. S. Cosson and J. P. Kevorkian, “Left ventricular diastolic dysfunction: an early sign of diabetic cardiomyopathy?” Diabetes and Metabolism, vol. 29, no. 5, pp. 455–466, 2003. View at Google Scholar · View at Scopus
  14. J. Larsen, M. Brekke, L. Sandvik, H. Arnesen, K. F. Haussen, and K. Dahl-Jorgensen, “Silent coronary atheromatosis in type 1 diabetic patients and its relation to long-term glycemic control,” Diabetes, vol. 51, no. 8, pp. 2637–2641, 2002. View at Google Scholar · View at Scopus
  15. A. Simon, J. Gariepy, G. Chironi, J.-L. Megnien, and J. Levenson, “Intima-media thickness: a new tool for diagnosis and treatment of cardiovascular risk,” Journal of Hypertension, vol. 20, no. 2, pp. 159–169, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. D. J. Sahn, A. DeMaria, J. Kisslo, and A. Weyman, “Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements,” Circulation, vol. 58, no. 6, pp. 1072–1083, 1978. View at Google Scholar · View at Scopus
  17. N. B. Schiller, P. M. Shah, M. Crawford et al., “Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms,” Journal of the American Society of Echocardiography, vol. 2, no. 5, pp. 358–367, 1989. View at Google Scholar · View at Scopus
  18. M. Romanens, S. Fankhauser, B. Saner, L. Michaud, and H. Saner, “No evidence for systolic or diastolic left ventricular dysfunction at rest in selected patients with long-term type I diabetes mellitus,” European Journal of Heart Failure, vol. 1, no. 2, pp. 169–175, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. T. K. Mishra, P. K. Rath, N. K. Mohanty, and S. K. Mishra, “Left ventricular systolic and diastolic dysfunction and their relationship with microvascular complications in normotensive, asymptomatic patients with type 2 diabetes mellitus,” Indian Heart Journal, vol. 60, no. 6, pp. 548–553, 2008. View at Google Scholar · View at Scopus
  20. A. Sato, L. Tarnow, and H.-H. Parving, “Increased left ventricular mass in normotensive type 1 diabetic patients with diabetic nephropathy,” Diabetes Care, vol. 21, no. 9, pp. 1534–1539, 1998. View at Google Scholar · View at Scopus
  21. D. M. Maahs, L. G. Ogden, D. Dabelea et al., “Association of glycaemia with lipids in adults with type 1 diabetes: modification by dyslipidaemia medication,” Diabetologia, vol. 53, no. 12, pp. 2518–2525, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. D. B. Petitti, G. Imperatore, S. L. Palla et al., “Serum lipids and glucose control: the SEARCH for diabetes in youth study,” Archives of Pediatrics and Adolescent Medicine, vol. 161, no. 2, pp. 159–165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. K. C. Loh, A. C. Thai, K. F. Lui, and W. Y. Ng, “High prevalence of dyslipidaemia despite adequate glycaemic control in patients with diabetes,” Annals of the Academy of Medicine Singapore, vol. 25, no. 2, pp. 228–232, 1996. View at Google Scholar · View at Scopus
  24. A. K. Kershnar, S. R. Daniels, G. Imperatore et al., “Lipid abnormalities are prevalent in youth with type 1 and type 2 diabetes: the search for diabetes in youth study,” Journal of Pediatrics, vol. 149, no. 3, pp. 314–319, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Guy, L. Ogden, R. P. Wadwa et al., “Lipid and lipoprotein profiles in youth with and without type 1 diabetes: the SEARCH for diabetes in youth case-control study,” Diabetes Care, vol. 32, no. 3, pp. 416–420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. P. K. Merrin, S. Renton, C. Fisher et al., “Serum lipids and apolipoproteins and their relationship with macrovascular disease in type 1 diabetes,” Diabetic Medicine, vol. 11, no. 4, pp. 402–406, 1994. View at Google Scholar · View at Scopus
  27. N. Chaturvedi, J. H. Fuller, and M.-R. Taskinen, “Differing associations of lipid and lipoprotein disturbances with the macrovascular and microvascular complications of type 1 diabetes,” Diabetes Care, vol. 24, no. 12, pp. 2071–2077, 2001. View at Google Scholar · View at Scopus
  28. P. Gunczler, R. Lanes, E. Lopez, S. Esaa, O. Villarroel, and R. Revel-Chion, “Cardiac mass and function, carotid artery intima-media thickness and lipoprotein (a) levels in children and adolescents with type 1 diabetes mellitus of short duration,” Journal of Pediatric Endocrinology and Metabolism, vol. 15, no. 2, pp. 181–186, 2002. View at Google Scholar · View at Scopus
  29. E. Adal, G. Koyuncu, A. Aydin, A. Çelebi, G. Kavunoǧlu, and H. Çm, “Asymptomatic cardiomyopathy in children and adolescents with type 1 diabetes mellitus: association of echocardiographic indicators with duration of diabetes mellitus and metabolic parameters,” Journal of Pediatric Endocrinology and Metabolism, vol. 19, no. 5, pp. 713–726, 2006. View at Google Scholar · View at Scopus
  30. B. Shivalkar, D. Dhondt, I. Goovaerts et al., “Flow mediated dilatation and cardiac function in type 1 diabetes mellitus,” American Journal of Cardiology, vol. 97, no. 1, pp. 77–82, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Barbagallo, R. K. Gupta, and L. M. Resnick, “Cellular ions in NIDDM: Relation of calcium to hyperglycemia and cardiac mass,” Diabetes Care, vol. 19, no. 12, pp. 1393–1398, 1996. View at Google Scholar · View at Scopus
  32. S. Abdelghaffar, M. El Amir, A. El Hadidi, and F. El Mougi, “Carotid intima-media thickness: an index for subclinical atherosclerosis in type 1 diabetes,” Journal of Tropical Pediatrics, vol. 52, no. 1, pp. 39–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Carugo, C. Giannattasio, I. Calchera et al., “Progression of functional and structural cardiac alterations in young normotensive uncomplicated patients with type 1 diabetes mellitus,” Journal of Hypertension, vol. 19, no. 9, pp. 1675–1680, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. F. C. Aepfelbacher, S. B. Yeon, L. A. Weinrauch, J. D'Elia, and A. J. Burger, “Improved glycemic control induces regression of left ventricular mass in patients with type 1 diabetes mellitus,” International Journal of Cardiology, vol. 94, no. 1, pp. 47–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Peppa-Patrikiou, M. Scordili, A. Antoniou, M. Giannaki, M. Dracopoulou, and C. Dacou-Voutetakis, “Carotid atherosclerosis in adolescents and young adults with IDDM: relation to urinary endothelin, albumin, free cortisol, and other factors,” Diabetes Care, vol. 21, no. 6, pp. 1004–1007, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. J. M. Sorof, A. V. Alexandrov, G. Cardwell, and R. J. Portman, “Carotid artery intimal-medial thickness and left ventricular hypertrophy in children with elevated blood pressure,” Pediatrics, vol. 111, no. 1, pp. 61–66, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. X.-Z. Yang, Y. Liu, J. Mi, C.-S. Tang, and J.-B. Du, “Pre-clinical atherosclerosis evaluated by carotid artery intima-media thickness and the risk factors in children,” Chinese Medical Journal, vol. 120, no. 5, pp. 359–362, 2007. View at Google Scholar · View at Scopus
  38. M. J. Järvisalo, L. Jartti, K. Näntö-Salonen et al., “Increased aortic intima-media thickness: a marker of preclinical atherosclerosis in high-risk children,” Circulation, vol. 104, no. 24, pp. 2943–2947, 2001. View at Google Scholar · View at Scopus
  39. D. Power, “Standards of medical care in diabetes: response to position statement of the American Diabetes Association,” Diabetes Care, vol. 29, no. 2, pp. 476–477, 2006. View at Google Scholar · View at Scopus
  40. S. Krishnan and K. R. Short, “Prevalence and significance of cardiometabolic risk factors in children with type 1 diabetes,” Journal of the CardioMetabolic Syndrome, vol. 4, no. 1, pp. 50–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. K. O. Schwab, J. Doerfer, W. Hecker et al., “Spectrum and prevalence of atherogenic risk factors in 27,358 children, adolescents, and young adults with type 1 diabetes: cross-sectional data from the German diabetes documentation and quality management system (DPV),” Diabetes Care, vol. 29, no. 2, pp. 218–225, 2006. View at Google Scholar · View at Scopus
  42. M. K. Rutter, H. Parise, E. J. Benjamin et al., “Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study,” Circulation, vol. 107, no. 3, pp. 448–454, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. S. D. J. M. Kanters, A. Algra, and J.-D. Banga, “Carotid intima-media thickness in hyperlipidemic type I and type II diabetic patients,” Diabetes Care, vol. 20, no. 3, pp. 276–280, 1997. View at Google Scholar · View at Scopus
  44. R. R. Rodriguez, R. A. Gómez-Díaz, J. T. Haj et al., “Carotid intima-media thickness in pediatric type 1 diabetic patients,” Diabetes Care, vol. 30, no. 10, pp. 2599–2602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. T. J. Berg, O. Snorgaard, J. Faber et al., “Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes,” Diabetes Care, vol. 22, no. 7, pp. 1186–1190, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. E. H. Kim and Y. H. Kim, “Left ventricular function in children and adolescents with type 1 diabetes mellitus,” Korean Circulation Journal, vol. 40, no. 3, pp. 125–130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Salem, S. El Behery, A. Adly, D. Khalil, and E. El Hadidi, “Early predictors of myocardial disease in children and adolescents with type 1 diabetes mellitus,” Pediatric Diabetes, vol. 10, no. 8, pp. 513–521, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. D. M. Nathan, J. Lachin, P. Cleary et al., “Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus,” The New England Journal of Medicine, vol. 348, no. 23, pp. 2294–2303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Yavuz, A. Akçay, R. E. Ömeroǧlu, R. Bundak, and M. Şükür, “Ultrasonic evaluation of early atherosclerosis in children and adolescents with type 1 diabetes mellitus,” Journal of Pediatric Endocrinology and Metabolism, vol. 15, no. 8, pp. 1131–1136, 2002. View at Google Scholar · View at Scopus
  50. J. Salazar, A. Rivas, M. Rodriguez, J. Felipe, M. D. Garcia, and J. Bone, “Left ventricular function determined by Doppler echocardiography in adolescents with type I (insulin-dependent) diabetes mellitus,” Acta Cardiologica, vol. 49, no. 5, pp. 435–439, 1994. View at Google Scholar · View at Scopus
  51. M.-R. Chen, Y.-J. Lee, C.-H. Hsu, H.-A. Kao, and F.-Y. Huang, “Cardiovascular function in young patients with type 1 diabetes mellitus,” Acta Paediatrica Taiwanica, vol. 40, no. 4, pp. 250–254, 1999. View at Google Scholar · View at Scopus