Table of Contents
International Journal of Peptides
Volume 2012 (2012), Article ID 316432, 7 pages
http://dx.doi.org/10.1155/2012/316432
Research Article

Peptide-Modulated Activity Enhancement of Acidic Protease Cathepsin E at Neutral pH

1Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
2Rational Evolutionary Design of Advanced Biomolecules, Saitama (REDS), Saitama Small Enterprise Promotion Corporation, No. 552, Saitama Industrial Technology Center, 3-12-18 Kami-Aoki, Kawaguchi, Saitama 333-0844, Japan

Received 29 August 2012; Revised 20 October 2012; Accepted 27 October 2012

Academic Editor: Weihong Pan

Copyright © 2012 Masayuki Komatsu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. K. Grant, “Therapeutic protein kinase inhibitors,” Cellular and Molecular Life Sciences, vol. 66, no. 7, pp. 1163–1177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Turk, “Targeting proteases: successes, failures and future prospects,” Nature Reviews Drug Discovery, vol. 5, no. 9, pp. 785–799, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Ottmann, P. Hauske, and M. Kaiser, “Activation instead of inhibition: targeting proenzymes for small-molecule intervention,” ChemBioChem, vol. 11, no. 5, pp. 637–639, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Zorn and J. A. Wells, “Turning enzymes on with small molecules,” Nature Chemical Biology, vol. 6, no. 3, pp. 179–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. S. Thakur, B. K. Jha, B. Dong et al., “Small-molecule activators of RNase L with broad-spectrum antiviral activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9585–9590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. B. Zhang, G. Zhou, and C. Li, “AMPK: an emerging drug target for diabetes and the metabolic syndrome,” Cell Metabolism, vol. 9, no. 5, pp. 407–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Ishii, K. Fukano, K. Shimada et al., “Proinsulin C-peptide activates α-enolase: implications for C-peptide cell membrane interaction,” Journal of Biochemistry, vol. 152, no. 1, pp. 53–62, 2012. View at Publisher · View at Google Scholar
  8. K. Kitamura, C. Yoshida, Y. Kinoshita et al., “Development of systemic in vitro evolution and its application to generation of peptide-aptamer-based inhibitors of cathepsin E,” Journal of Molecular Biology, vol. 387, no. 5, pp. 1186–1198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Biyani, M. Futakami, K. Kitamura et al., “In vitro selection of cathepsin E-activity-enhancing peptide aptamers at neutral pH,” International Journal of Peptides, vol. 2012, Article ID 834525, 10 pages, 2012. View at Publisher · View at Google Scholar
  10. M. Chlabicz, M. Gacko, A. Worowska, and R. Lapinski, “Cathepsin E (EC 3. 4. 23. 34)-a review,” Folia Histochem. Cytobiol, vol. 49, pp. 547–557, 2011. View at Publisher · View at Google Scholar
  11. T. Kawakubo, K. Okamoto, J. I. Iwata et al., “Cathepsin E prevents tumor growth and metastasis by catalyzing the proteolytic release of soluble TRAIL from tumor cell surface,” Cancer Research, vol. 67, no. 22, pp. 10869–10878, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Yasukochi, T. Kawakubo, S. Nakamura, and K. Yamamoto, “Cathepsin E enhances anticancer activity of doxorubicin on human prostate cancer cells showing resistance to TRAIL-mediated apoptosis,” Biological Chemistry, vol. 391, no. 8, pp. 947–958, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Shin, T. Kadowaki, J. I. Iwata et al., “Association of cathepsin E with tumor growth arrest through angiogenesis inhibition and enhanced immune responses,” Biological Chemistry, vol. 388, no. 11, pp. 1173–1181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Tabuchi, S. Soramoto, N. Nemoto, and Y. Husimi, “An in vitro DNA virus for in vitro protein evolution,” FEBS Letters, vol. 508, no. 3, pp. 309–312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Bromme and K. Okamoto, “Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution,” Biological Chemistry Hoppe-Seyler, vol. 376, no. 6, pp. 379–384, 1995. View at Google Scholar · View at Scopus
  16. K. Kitamura, Y. Kinoshita, S. Narasaki, N. Nemoto, Y. Husimi, and K. Nishigaki, “Construction of block-shuffled libraries of DNA for evolutionary protein engineering: Y-ligation-based block shuffling,” Protein Engineering, vol. 15, no. 10, pp. 843–853, 2003. View at Google Scholar · View at Scopus
  17. M. Naimuddin, K. Kitamura, Y. Kinoshita et al., “Selection-by-function: efficient enrichment of cathepsin E inhibitors from a DNA library,” Journal of Molecular Recognition, vol. 20, no. 1, pp. 58–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Tsuji-Ueno, M. Komatsu, K. Iguchi et al., “Novel High-affinity Aβ-binding peptides identified by an advanced in vitro evolution, progressive library method,” Protein and Peptide Letters, vol. 18, no. 6, pp. 642–650, 2011. View at Google Scholar · View at Scopus
  19. K. Kitamura, C. Yoshida, M. Salimullah et al., “Rapid in vitro synthesis of pico-mole quantities of peptides,” Chemistry Letters, vol. 37, no. 12, pp. 1250–1251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Stroba, F. Schaeffer, V. Hindie et al., “3,5-Diphenylpent-2-enoic acids as allosteric activators of the protein kinase PDK1: structure-activity relationships and thermodynamic characterization of binding as paradigms for PIF-binding pocket-targeting compounds,” Journal of Medicinal Chemistry, vol. 52, no. 15, pp. 4683–4693, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Leung, A. Datti, M. Cossette et al., “Activators of cylindrical proteases as antimicrobials: identification and development of small molecule activators of ClpP protease,” Cell, vol. 18, no. 9, pp. 1167–1178, 2011. View at Google Scholar