Table of Contents
International Journal of Peptides
Volume 2012 (2012), Article ID 452524, 10 pages
http://dx.doi.org/10.1155/2012/452524
Research Article

Diet-Induced Obesity in Mice Overexpressing Neuropeptide Y in Noradrenergic Neurons

1Department of Pharmacology, Drug Development, and Therapeutics and Turku Center for Disease Modeling, University of Turku, Itäinen Pitkäkatu 4B, 20520 Turku, Finland
2Fin Pharma Doctorate Program Drug Discovery Section, University of Turku, Itäinen Pitkäkatu 4B, 20520 Turku, Finland
3Unit of Clinical Pharmacology, Turku University Hospital, Itäinen Pitkäkatu 4B, 20520 Turku, Finland

Received 25 May 2012; Accepted 6 September 2012

Academic Editor: Hubert Vaudry

Copyright © 2012 Suvi T. Ruohonen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Beck, “Neuropeptide Y in normal eating and in genetic and dietary-induced obesity,” Philosophical Transactions of the Royal Society B, vol. 361, no. 1471, pp. 1159–1185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Zarjevski, I. Cusin, R. Vettor, F. Rohner-Jeanrenaud, and B. Jeanrenaud, “Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity,” Endocrinology, vol. 133, no. 4, pp. 1753–1758, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. R. L. Bradley, J. P. R. Mansfield, and E. Maratos-Flier, “Neuropeptides, including neuropeptide y and melanocortins, mediate lipolysis in murine adipocytes,” Obesity Research, vol. 13, no. 4, pp. 653–661, 2005. View at Google Scholar · View at Scopus
  4. L. E. Kuo, J. B. Kitlinska, J. U. Tilan et al., “Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome,” Nature Medicine, vol. 13, no. 7, pp. 803–811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. H. R. Patel, Y. Qi, E. J. Hawkins et al., “Neuropeptide Y deficiency attenuates responses to fasting and high-fat diet in obesity-prone mice,” Diabetes, vol. 55, no. 11, pp. 3091–3098, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. T. Ruohonen, U. Pesonen, N. Moritz et al., “Transgenic mice overexpressing neuropeptide y in noradrenergic neurons: a novel model of increased adiposity and impaired glucose tolerance,” Diabetes, vol. 57, no. 6, pp. 1517–1525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. T. Ruohonen, E. Savontaus, P. Rinne et al., “Stress-induced hypertension and increased sympathetic activity in mice overexpressing neuropeptide y in noradrenergic neurons,” Neuroendocrinology, vol. 89, no. 3, pp. 351–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. T. Ruohonen, K. Abe, M. Kero et al., “Sympathetic nervous system-targeted neuropeptide Y overexpression in mice enhances neointimal formation in response to vascular injury,” Peptides, vol. 30, no. 4, pp. 715–720, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. K. Karvonen, U. Pesonen, M. Koulu et al., “Association of a leucine(7)-to-proline(7) polymorphism in the signal peptide of neuropeptide Y with high serum cholesterol and LDL cholesterol levels,” Nature Medicine, vol. 4, no. 12, pp. 1434–1437, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Kallio, U. Pesonen, K. Kaipio et al., “Altered intracellular processing and release of neuropeptide Y due to leucine 7 to proline 7 polymorphism in the signal peptide of preproneuropeptide Y in humans,” The FASEB Journal, vol. 15, no. 7, pp. 1242–1244, 2001. View at Google Scholar · View at Scopus
  11. G. C. Mitchell, Q. Wang, P. Ramamoorthy, and M. D. Whim, “A common single nucleotide polymorphism alters the synthesis and secretion of neuropeptide Y,” Journal of Neuroscience, vol. 28, no. 53, pp. 14428–14434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. U. Jaakkola, U. Pesonen, E. Vainio-Jylhä, M. Koulu, M. Pöllönen, and J. Kallio, “The Leu7Pro polymorphism of neuropeptide Y is associated with younger age of onset of type 2 diabetes mellitus and increased risk for nephropathy in subjects with diabetic retinopathy,” Experimental and Clinical Endocrinology and Diabetes, vol. 114, no. 4, pp. 147–152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. U. Pesonen, “NPY L7P polymorphism and metabolic diseases,” Regulatory Peptides, vol. 149, no. 1–3, pp. 51–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. U. Jaakkola, J. Kallio, R. J. Heine et al., “Neuropeptide Y polymorphism significantly magnifies diabetes and cardiovascular disease risk in obesity: the Hoorn Study,” European Journal of Clinical Nutrition, vol. 63, no. 1, pp. 150–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. U. Jaakkola, T. Kakko, H. Seppälä et al., “The Leu7Pro polymorphism of the signal peptide of neuropeptide Y (NPY) gene is associated with increased levels of inflammatory markers preceding vascular complications in patients with type 2 diabetes,” Microvascular Research, vol. 80, no. 3, pp. 433–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Qi, H. Fujita, J. Jin et al., “Characterization of susceptibility of inbred mouse strains to diabetic nephropathy,” Diabetes, vol. 54, no. 9, pp. 2628–2637, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. B. G. Han, C. M. Hao, E. E. Tchekneva et al., “Markers of glycemic control in the mouse: comparisons of 6-h-and overnight-fasted blood glucoses to Hb A1c,” American Journal of Physiology, vol. 295, no. 4, pp. E981–E986, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. M. Novak, C. M. Kotz, and J. A. Levine, “Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats,” American Journal of Physiology, vol. 290, no. 2, pp. E396–E403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Kus, T. Prazak, P. Brauner et al., “Induction of muscle thermogenesis by high-fat diet in mice: association with obesity-resistance,” American Journal of Physiology, vol. 295, no. 2, pp. E356–E367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Enerbäck, A. Jacobsson, E. M. Simpson et al., “Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese,” Nature, vol. 387, no. 6628, pp. 90–94, 1997. View at Google Scholar · View at Scopus
  21. A. Hamann, J. S. Flier, and B. B. Lowell, “Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia,” Endocrinology, vol. 137, no. 1, pp. 21–29, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Kushi, H. Sasai, H. Koizumi, N. Takeda, M. Yokoyama, and M. Nakamura, “Obesity and mild hyperinsulinemia found in neuropeptide Y-Y1 receptor-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 26, pp. 15659–15664, 1998. View at Google Scholar · View at Scopus
  23. L. Zhang, L. MacIa, N. Turner et al., “Peripheral neuropeptide Y Y1 receptors regulate lipid oxidation and fat accretion,” International Journal of Obesity, vol. 34, no. 2, pp. 357–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. F. P. Pralong, C. Gonzales, M. J. Voirol et al., “The neuropeptide Y Y1 receptor regulates leptin-mediated control of energy homeostasis and reproductive functions,” The FASEB Journal, vol. 16, no. 7, pp. 712–714, 2002. View at Google Scholar · View at Scopus
  25. C. Gonzales, M. J. Voirol, M. Giacomini, R. C. Gaillard, T. Pedrazzini, and F. P. Pralong, “The neuropeptide Y Y1 receptor mediates NPY-induced inhibition of the gonadotrope axis under poor metabolic conditions,” The FASEB Journal, vol. 18, no. 1, pp. 137–139, 2004. View at Google Scholar · View at Scopus
  26. J. J. Bonavera, M. G. Dube, P. S. Kalra, and S. P. Kalra, “Anorectic effects of estrogen may be mediated by decreased neuropeptide-Y release in the hypothalamic paraventricular nucleus,” Endocrinology, vol. 134, no. 6, pp. 2367–2370, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. D. G. Baskin, B. J. Norwood, M. W. Schwartz, and D. J. Koerker, “Estradiol inhibits the increase of hypothalamic neuropeptide Y messenger ribonucleic acid expression induced by weight loss in ovariectomized rats,” Endocrinology, vol. 136, no. 12, pp. 5547–5554, 1995. View at Google Scholar · View at Scopus
  28. S. Thammacharoen, T. A. Lutz, N. Geary, and L. Asarian, “Hindbrain administration of estradiol inhibits feeding and activates estrogen receptor-α-expressing cells in the nucleus tractus solitarius of ovariectomized rats,” Endocrinology, vol. 149, no. 4, pp. 1609–1617, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. L. Klebig, J. E. Wilkinson, J. G. Geisler, and R. P. Woychik, “Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, pp. 4728–4732, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. E. H. Leiter and H. D. Chapman, “Obesity-induced diabetes (diabesity) in C57BL/KsJ mice produces aberrant trans-regulation of sex steroid sulfotransferase genes,” The Journal of Clinical Investigation, vol. 93, no. 5, pp. 2007–2013, 1994. View at Google Scholar · View at Scopus