Table of Contents Author Guidelines Submit a Manuscript
International Journal of Peptides
Volume 2012 (2012), Article ID 731293, 10 pages
http://dx.doi.org/10.1155/2012/731293
Research Article

Molecular Cloning and Sequence Analysis of the cDNAs Encoding Toxin-Like Peptides from the Venom Glands of Tarantula Grammostola rosea

1Molecular Neurophysiology Group, Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
2United Graduate School of Drug Discovery and Medical Information Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

Received 16 September 2011; Accepted 26 November 2011

Academic Editor: Mirian A. F. Hayashi

Copyright © 2012 Tadashi Kimura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Escoubas and G. F. King, “Venomics as a drug discovery platform,” Expert Review of Proteomics, vol. 6, no. 3, pp. 221–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. J. Lewis and M. L. Garcia, “Therapeutic potential of venom peptides,” Nature Reviews Drug Discovery, vol. 2, no. 10, pp. 790–802, 2003. View at Google Scholar · View at Scopus
  3. M. E. Adams, “Agatoxins: ion channel specific toxins from the american funnel web spider, Agelenopsis aperta,” Toxicon, vol. 43, no. 5, pp. 509–525, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Corzo, N. Gilles, H. Satake et al., “Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel,” FEBS Letters, vol. 547, no. 1–3, pp. 43–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Wen, D. T. R. Wilson, S. Kuruppu et al., “Discovery of an MIT-like atracotoxin family: Spider venom peptides that share sequence homology but not pharmacological properties with AVIT family proteins,” Peptides, vol. 26, no. 12, pp. 2412–2426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. G. K. Isbister, J. E. Seymour, M. R. Gray, and R. J. Raven, “Bites by spiders of the family Theraphosidae in humans and canines,” Toxicon, vol. 41, no. 4, pp. 519–524, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Amzallag, B. J. Passer, D. Allanic et al., “TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway,” The Journal of Biological Chemistry, vol. 279, no. 44, pp. 46104–46112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Escoubas and L. Rash, “Tarantulas: eight-legged pharmacists and combinatorial chemists,” Toxicon, vol. 43, no. 5, pp. 555–574, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Bosmans, L. Rash, S. Zhu et al., “Four novel tarantula toxins as selective modulators of voltage-gated sodium channel subtypes,” Molecular Pharmacology, vol. 69, no. 2, pp. 419–429, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. E. Middleton, V. A. Warren, R. L. Kraus et al., “Two tarantula peptides inhibit activation of multiple sodium channels,” Biochemistry, vol. 41, no. 50, pp. 14734–14747, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. H. W. Tedford, B. L. Sollod, F. Maggio, and G. F. King, “Australian funnel-web spiders: master insecticide chemists,” Toxicon, vol. 43, no. 5, pp. 601–618, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. Torres, H. Y. Wong, M. Desai, S. Moochhala, P. W. Kuchel, and R. M. Kini, “Identification of a novel family of proteins in snake venoms. Purification and structural characterization of nawaprin from Naja nigricollis snake venom,” The Journal of Biological Chemistry, vol. 278, no. 41, pp. 40097–40104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Ono, T. Kimura, and T. Kubo, “Characterization of voltage-dependent calcium channel blocking peptides from the venom of the tarantula Grammostola rosea,” Toxicon, vol. 58, no. 3, pp. 265–276, 2011. View at Publisher · View at Google Scholar
  14. B. Zhang, Q. Liu, W. Yin et al., “Transcriptome analysis of Deinagkistrodon acutus venomous gland focusing on cellular structure and functional aspects using expressed sequence tags,” BMC Genomics, vol. 7, article 152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. G. S. Magalhães, I. L. M. Junqueira-de-Azevedo, M. Lopes-Ferreira, D. M. Lorenzini, P. L. Ho, and A. M. Moura-da-Silva, “Transcriptome analysis of expressed sequence tags from the venom glands of the fish Thalassophryne nattereri,” Biochimie, vol. 88, no. 6, pp. 693–699, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Chen, M. Deng, Q. He et al., “Molecular diversity and evolution of cystine knot toxins of the tarantula Chilobrachys jingzhao,” Cellular and Molecular Life Sciences, vol. 65, no. 15, pp. 2431–2444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Zhao, F. Rassendren, B.-K. Kaang, Y. Furukawa, T. Kubo, and E. R. Kandel, “A new class of noninactivating K+ channels from aplysia capable of contributing to the resting potential and firing patterns of neurons,” Neuron, vol. 13, no. 5, pp. 1205–1213, 1994. View at Publisher · View at Google Scholar
  18. J. Chen, L. Zhao, L. Jiang et al., “Transcriptome analysis revealed novel possible venom components and cellular processes of the tarantula Chilobrachys jingzhao venom gland,” Toxicon, vol. 52, no. 7, pp. 794–806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Diego-García, S. Peigneur, E. Waelkens, S. Debaveye, and J. Tytgat, “Venom components from Citharischius crawshayi spider (Family Theraphosidae): exploring transcriptome, venomics, and function,” Cellular and Molecular Life Sciences, vol. 67, no. 16, pp. 2799–2813, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. J. Swartz and R. MacKinnon, “An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula,” Neuron, vol. 15, no. 4, pp. 941–949, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Jiang, A. Lee, J. Chen et al., “X-ray structure of a voltage-dependent K+ channel,” Nature, vol. 423, no. 6935, pp. 33–41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. K. L. Ostrow, A. Mammoser, T. Suchyna et al., “cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels,” Toxicon, vol. 42, no. 3, pp. 263–274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. R. A. Lampe, “Analgesic peptides from venom of Grammostola spatulata and use thereof,” U. S. Patent, no. 5877026, 1999. View at Google Scholar
  24. R. A. Lampe and F. Sachs, “Antiarrhythmic peptide from venom of spider Grammostola spatulata,” U. S. Patent, no. 5968838, 1999. View at Google Scholar
  25. E. Redaelli, R. R. Cassulini, D. F. Silva et al., “Target promiscuity and heterogeneous effects of tarantula venom peptides affecting Na+ and K+ ion channels,” The Journal of Biological Chemistry, vol. 285, no. 6, pp. 4130–4142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Clement, G. Odell, F. Z. Zamudio et al., “Isolation and characterization of a novel toxin from the venom of the spider Grammostola rosea that blocks sodium channels,” Toxicon, vol. 50, no. 1, pp. 65–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. A. Lampe, P. A. Defeo, M. D. Davison et al., “Isolation and pharmacological characterization of ω-grammotoxin SIA, a novel peptide inhibitor of neuronal voltage-sensitive calcium channel responses,” Molecular Pharmacology, vol. 44, no. 2, pp. 451–460, 1993. View at Google Scholar · View at Scopus
  28. K. Takeuchi, E. J. Park, C. W. Lee et al., “Solution structure of ω-grammotoxin SIA, a gating modifier of P/Q and N-type Ca2+ channel,” Journal of Molecular Biology, vol. 321, no. 3, pp. 517–526, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Bosmans, M. F. Martin-Eauclaire, and K. J. Swartz, “Deconstructing voltage sensor function and pharmacology in sodium channels,” Nature, vol. 456, no. 7219, pp. 202–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Bosmans and K. J. Swartz, “Targeting voltage sensors in sodium channels with spider toxins,” Trends in Pharmacological Sciences, vol. 31, no. 4, pp. 175–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. R. C. Rodríguez de la Vega, “A note on the evolution of spider toxins containing the ICK-motif,” Toxin Reviews, vol. 24, no. 3-4, pp. 385–397, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Kaser, M. Winklmayr, G. Lepperdinger, and G. Kreil, “The AVIT protein family: secreted cystein-rich vertebrate proteins with diverse functions,” EMBO Reports, vol. 4, no. 5, pp. 469–473, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Schweitz, P. Pacaud, S. Diochot, D. Moinier, and M. Lazdunski, “MIT1, a black mamba toxin with a new and highly potent activity on intestinal contraction,” FEBS Letters, vol. 461, no. 3, pp. 183–188, 1999. View at Publisher · View at Google Scholar
  34. J. Boisbouvier, J. P. Albrand, M. Blackledge et al., “A structural homologue of colipase in black mamba venom revealed by NMR floating disulphide bridge analysis,” Journal of Molecular Biology, vol. 283, no. 1, pp. 205–219, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Mollay, C. Wechselberger, G. Mignogna et al., “Bv8, a small protein from frog skin and its homologue from snake venom induce hyperalgesia in rats,” European Journal of Pharmacology, vol. 374, no. 2, pp. 189–196, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Negri, R. Lattanzi, E. Giannini, and P. Melchiorri, “Bv8/Prokineticin proteins and their receptors,” Life Sciences, vol. 81, no. 14, pp. 1103–1116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Giannini, R. Lattanzi, A. Nicotra et al., “The chemokine Bv8/prokineticin 2 is up-regulated in inflammatory granulocytes and modulates inflammatory pain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 34, pp. 14646–14651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Negri, R. Lattanzi, E. Giannini, M. Canestrelli, A. Nicotra, and P. Melchiorri, “Bv8/prokineticins and their receptors: a new pronociceptive system,” International Review of Neurobiology, vol. 85, pp. 145–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Dorsch, Y. Qiu, D. Soler et al., “PK1/EG-VEGF induces monocyte differentiation and activation,” Journal of Leukocyte Biology, vol. 78, no. 2, pp. 426–434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Söderhäll, Y. A. Kim, P. Jiravanichpaisal, S. Y. Lee, and K. Söderhäll, “An ancient role for a prokineticin domain in invertebrate hematopoiesis,” The Journal of Immunology, vol. 174, no. 10, pp. 6153–6160, 2005. View at Google Scholar · View at Scopus
  41. L. Jiang, L. Peng, J. Chen, Y. Zhang, X. Xiong, and S. Liang, “Molecular diversification based on analysis of expressed sequence tags from the venom glands of the Chinese bird spider Ornithoctonus huwena,” Toxicon, vol. 51, no. 8, pp. 1479–1489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Savel-Niemann, “Tarantula (Eurypelma californicum) venom, a multicomponent system,” Biological Chemistry Hoppe-Seyler, vol. 370, no. 5, pp. 485–498, 1989. View at Google Scholar · View at Scopus
  43. I. I. Kaiser, P. R. Griffin, S. D. Aird et al., “Primary structures of two proteins from the venom of the Mexican red knee tarantula (Brachypelma smithii),” Toxicon, vol. 32, no. 9, pp. 1083–1093, 1994. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Corzo, C. Bernard, H. Clement et al., “Insecticidal peptides from the theraposid spider Brachypelma albiceps: an NMR-based model of Ba2,” Biochimica et Biophysica Acta, vol. 1794, no. 8, pp. 1190–1196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Tang, Y. Zhang, and S. Liang, “Large-scale identification and analysis of peptide toxins from the tarantula Ornithoctonus hainana venom using a venomic strategy,” NCBI, Direct Submission, 2010, Accession no. GU293118. View at Google Scholar
  46. Y. Zhang, “Transcriptome analysis of Lycosa singoriensis spider venomous gland,” NCBI, Direct Submission, 2008, Accession no. FM864147. View at Google Scholar
  47. W. S. Skinner, P. A. Dennis, J. P. Li, and G. B. Quistad, “Identification of insecticidal peptides from venom of the trap-door spider, Aptostichus schlingeri (Ctenizidae),” Toxicon, vol. 30, no. 9, pp. 1043–1050, 1992. View at Publisher · View at Google Scholar · View at Scopus
  48. U. A. Bommer, A. Lazaris-Karatzas, A. De Benedetti et al., “Translational regulation of the mammalian growth-related protein p23: involvement of eIF-4E,” Cellular and Molecular Biology Research, vol. 40, no. 7-8, pp. 633–641, 1994. View at Google Scholar · View at Scopus
  49. Y. Gachet, S. Tournier, M. Lee, A. Lazaris-Karatzas, T. Poulton, and U. A. Bommer, “The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle,” Journal of Cell Science, vol. 112, part 8, pp. 1257–1271, 1999. View at Google Scholar · View at Scopus
  50. S. M. MacDonald, T. Rafnar, J. Langdon, and L. M. Lichtenstein, “Molecular identification of an IgE-Dependent histamine-releasing factor,” Science, vol. 269, no. 5224, pp. 688–690, 1995. View at Google Scholar · View at Scopus
  51. D. A. Ellerman, V. G. Da Ros, D. J. Cohen, D. Busso, M. M. Morgenfeld, and P. S. Cuasnicú, “Expression and structure-function analysis of DE, a sperm cysteine-rich secretory protein that mediates gamete fusion,” Biology of Reproduction, vol. 67, no. 4, pp. 1225–1231, 2002. View at Google Scholar · View at Scopus
  52. N. J. Charest, D. R. Joseph, E. M. Wilson, and F. S. French, “Molecular cloning of complementary deoxyribonucleic acid for an androgen-regulated epididymal protein: sequence homology with metalloproteins,” Molecular Endocrinology, vol. 2, no. 10, pp. 999–1004, 1988. View at Google Scholar · View at Scopus
  53. A. L. Kierszenbaum, O. Lea, P. Petrusz, F. S. French, and L. L. Tres, “Isolation, culture, and immunocytochemical characterization of epididymal epithelial cells from pubertal and adult rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 3, pp. 1675–1679, 1981. View at Google Scholar · View at Scopus
  54. M. Kasahara, H. C. Passmore, and J. Klein, “A testis-specific gene Tpx-1 maps between Pgk-2 and Mep-1 on mouse chromosome 17,” Immunogenetics, vol. 29, no. 1, pp. 61–63, 1989. View at Google Scholar · View at Scopus
  55. L. Kjeldsen, J. B. Cowland, A. H. Johnsen, and N. Borregaard, “SGP28, a novel matrix glycoprotein in specific granules of human neutrophils with similarity to a human testis-specific gene product and to a rodent sperm-coating glycoprotein,” FEBS Letters, vol. 380, no. 3, pp. 246–250, 1996. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Mochca-Morales, B. M. Martin, and L. D. Possani, “Isolation and characterization of helothermine, a novel toxin from Heloderma horridum horridum (Mexican beaded lizard) venom,” Toxicon, vol. 28, no. 3, pp. 299–309, 1990. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Nobile, F. Noceti, G. Prestipino, and L. D. Possani, “Helothermine, a lizard venom toxin, inhibits calcium current in cerebellar granules,” Experimental Brain Research, vol. 110, no. 1, pp. 15–20, 1996. View at Google Scholar
  58. Y. Yamazaki, H. Koike, Y. Sugiyama et al., “Cloning and characterization of novel snake venom proteins that block smooth muscle contraction,” European Journal of Biochemistry, vol. 269, no. 11, pp. 2708–2715, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Bonasio, G. Zhang, C. Ye et al., “Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator,” Science, vol. 329, no. 5995, pp. 1068–1071, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Naimuddin, S. Kobayashi, C. Tsutsui et al., “Directed evolution of a three-finger neurotoxin by using cDNA display yields antagonists as well as agonists of interleukin-6 receptor signaling,” Molecular Brain, vol. 4, no. 1, article 2, 2011. View at Publisher · View at Google Scholar · View at Scopus