Table of Contents
International Journal of Plant Genomics
Volume 2011, Article ID 569826, 7 pages
http://dx.doi.org/10.1155/2011/569826
Review Article

Methylation, Transcription, and Rearrangements of Transposable Elements in Synthetic Allopolyploids

Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Received 28 October 2010; Accepted 15 March 2011

Academic Editor: Pierre Sourdille

Copyright © 2011 Beery Yaakov and Khalil Kashkush. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Sabot, R. Guyot, T. Wicker et al., “Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations,” Molecular Genetics and Genomics, vol. 274, no. 2, pp. 119–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Wicker, F. Sabot, A. Hua-Van et al., “A unified classification system for eukaryotic transposable elements,” Nature Reviews Genetics, vol. 8, no. 12, pp. 973–982, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. R. K. Slotkin and R. Martienssen, “Transposable elements and the epigenetic regulation of the genome,” Nature Reviews Genetics, vol. 8, no. 4, pp. 272–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Feschotte and E. J. Pritham, “DNA transposons and the evolution of eukaryotic genomes,” Annual Review of Genetics, vol. 41, pp. 331–368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Kashkush, M. Feldman, and A. A. Levy, “Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat,” Nature Genetics, vol. 33, no. 1, pp. 102–106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Iida, Y. Morita, J. D. Choi, K. I. Park, and A. Hoshino, “Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories,” Advances in Biophysics, vol. 38, pp. 141–159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Lockton and B. S. Gaut, “The contribution of transposable elements to expressed coding sequence in arabidopsis thaliana,” Journal of Molecular Evolution, vol. 68, no. 1, pp. 80–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Gehring and S. Henikoff, “DNA methylation and demethylation in arabidopsis,” in The Arabidopsis Book, pp. 1–14, American Society of Plant Biologists, 2008. View at Google Scholar
  9. S. J. Cokus, S. Feng, X. Zhang et al., “Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning,” Nature, vol. 452, no. 7184, pp. 215–219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Kumar and J. L. Bennetzen, “Plant retrotransposons,” Annual Review of Genetics, vol. 33, pp. 479–532, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. P. D. Rabinowicz, L. E. Palmer, B. P. May et al., “Genes and transposons are differentially methylated in plants, but not in mammals,” Genome Research, vol. 13, no. 12, pp. 2658–2664, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Madlung and L. Comai, “The effect of stress on genome regulation and structure,” Annals of Botany, vol. 94, no. 4, pp. 481–495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. A. Levy and M. Feldman, “The impact of polyploidy on grass genome evolution,” Plant Physiology, vol. 130, no. 4, pp. 1587–1593, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Ohno, Evolution by Gene Duplication, Springer, New York, NY, USA, 1970.
  15. B. Liu, J. M. Vega, and M. Feldman, “Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences,” Genome, vol. 41, no. 4, pp. 535–542, 1998. View at Google Scholar · View at Scopus
  16. B. Liu, J. M. Vega, G. Segal, S. Abbo, M. Rodova, and M. Feldman, “Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences,” Genome, vol. 41, no. 2, pp. 272–277, 1998. View at Google Scholar · View at Scopus
  17. H. Ozkan, A. A. Levy, and M. Feldman, “Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group,” Plant Cell, vol. 13, no. 8, pp. 1735–1747, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Shaked, K. Kashkush, H. Ozkan, M. Feldman, and A. A. Levy, “Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat,” Plant Cell, vol. 13, no. 8, pp. 1749–1759, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Han, G. Fedak, W. Guo, and B. Liu, “Rapid and repeatable elimination of a parental genome-specific repeat (pGc1R-1a) in newly synthesized wheat allopolyploids,” Genetics, vol. 170, no. 3, pp. 1239–1245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Skalická, K. Y. Lim, R. Matyasek, M. Matzke, A. R. Leitch, and A. Kovarik, “Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco,” New Phytologist, vol. 166, no. 1, pp. 291–303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. J. Chen and C. S. Pikaard, “Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance,” Genes and Development, vol. 11, no. 16, pp. 2124–2136, 1997. View at Google Scholar · View at Scopus
  22. Z. J. Chen and C. S. Pikaard, “Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 7, pp. 3442–3447, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Comai, A. P. Tyagi, K. Winter et al., “Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids,” Plant Cell, vol. 12, no. 9, pp. 1551–1567, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. H. S. Lee and Z. J. Chen, “Protein-coding genes are epigenetically regulated in Arabidopsis polyploids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6753–6758, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Kashkush, M. Feldman, and A. A. Levy, “Gene loss, silencing and activation in a newly synthesized wheat allotetraploid,” Genetics, vol. 160, no. 4, pp. 1651–1659, 2002. View at Google Scholar · View at Scopus
  26. J. A. Tate, Z. Ni, A. C. Scheen et al., “Evolution and expression of homeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid,” Genetics, vol. 173, no. 3, pp. 1599–1611, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Madlung, R. W. Masuelli, B. Watson, S. H. Reynolds, J. Davison, and L. Comai, “Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids,” Plant Physiology, vol. 129, no. 2, pp. 733–746, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. R. J. Waugh O'Neill, M. J. O'Neill, and J. A. Marshall Graves, “Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid,” Nature, vol. 393, no. 6680, pp. 68–72, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Feldman and A. A. Levy, “Allopolyploidy—a shaping force in the evolution of wheat genomes,” Cytogenetic and Genome Research, vol. 109, no. 1–3, pp. 250–258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Feldman, “The origin of cultivated wheat,” in The Wheat Book, A. Bonjean and W. Angus, Eds., pp. 1–56, Lavoisier Tech. & Doc., Paris, France, 2001. View at Google Scholar
  31. M. Feldman, B. Liu, G. Segal, S. Abbo, A. A. Levy, and J. M. Vega, “Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes,” Genetics, vol. 147, no. 3, pp. 1381–1387, 1997. View at Google Scholar · View at Scopus
  32. V. Khasdan, B. Yaakov, Z. Kraitshtein, and K. Kashkush, “Developmental timing of DNA elimination following allopolyploidization in wheat,” Genetics, vol. 185, no. 1, pp. 387–390, 2010. View at Publisher · View at Google Scholar
  33. H. M. Daud and J. P. Gustafson, “Molecular evidence for Triticum speltoides as a B-genome progenitor of wheat (Triticum aestivum),” Genome, vol. 39, no. 3, pp. 543–548, 1996. View at Google Scholar · View at Scopus
  34. E. G. Pestsova, N. P. Goncharov, and E. A. Salina, “Elimination of tandem repeat of telomeric heterochromatin during the evolution of wheat,” Theoretical and Applied Genetics, vol. 97, no. 8, pp. 1380–1386, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. E. A. Salina, O. M. Numerova, H. Ozkan, and M. Feldman, “Alterations in subtelomeric tandem repeats during early stages of allopolyploidy in wheat,” Genome, vol. 47, no. 5, pp. 860–867, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Anamthawat-Jonsson and J. S. Heslop-Harrison, “Isolation and characterization of genome-specific DNA sequences in Triticeae species,” Molecular and General Genetics, vol. 240, no. 2, pp. 151–158, 1993. View at Google Scholar · View at Scopus
  37. T. Galitski, A. J. Saldanha, C. A. Styles, E. S. Lander, and G. R. Fink, “Ploidy regulation of gene expression,” Science, vol. 285, no. 5425, pp. 251–254, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Guo, D. Davis, and J. A. Birchler, “Dosage effects on gene expression in a maize ploidy series,” Genetics, vol. 142, no. 4, pp. 1349–1355, 1996. View at Google Scholar · View at Scopus
  39. P. Nigumann, K. Redik, K. Mätlik, and M. Speek, “Many human genes are transcribed from the antisense promoter of L1 retrotransposon,” Genomics, vol. 79, no. 5, pp. 628–634, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. C. M. Vicient, M. J. Jääskeläinen, R. Kalendar, and A. H. Schulman, “Active retrotransposons are a common feature of grass genomes,” Plant Physiology, vol. 125, no. 3, pp. 1283–1292, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Kashkush and V. Khasdan, “Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes,” Genetics, vol. 177, no. 4, pp. 1975–1985, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Madlung, A. P. Tyagi, B. Watson et al., “Genomic changes in synthetic Arabidopsis polyploids,” Plant Journal, vol. 41, no. 2, pp. 221–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Masson, R. Surosky, J. A. Kingsbury, and N. V. Fedoroff, “Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus,” Genetics, vol. 117, no. 1, pp. 117–137, 1987. View at Google Scholar · View at Scopus
  44. R. Martienssen, A. Barkan, W. C. Taylor, and M. Freeling, “Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize,” Genes and Development, vol. 4, no. 3, pp. 331–343, 1990. View at Google Scholar · View at Scopus
  45. M. Puig, M. Cáceres, and A. Ruiz, “Silencing of a gene adjacent to the breakpoint of a widespread Drosophila inversion by a transposon-induced antisense RNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 24, pp. 9013–9018, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Kraitshtein, B. Yaakov, and V. Khasdan, “The genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat,” Genetics, vol. 186, pp. 801–812, 2010. View at Google Scholar
  47. J. Beaulieu, M. Jean, and F. Belzile, “The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp. petraea as an alternative model system for the study of polyploidy in plants,” Molecular Genetics and Genomics, vol. 281, no. 4, pp. 421–435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Salmon, M. L. Ainouche, and J. F. Wendel, “Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae),” Molecular Ecology, vol. 14, no. 4, pp. 1163–1175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Xu, L. Zhong, X. Wu, X. Fang, and J. Wang, “Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids,” Planta, vol. 229, no. 3, pp. 471–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. L. N. Lukens, J. C. Pires, E. Leon, R. Vogelzang, L. Oslach, and T. Osborn, “Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids,” Plant Physiology, vol. 140, no. 1, pp. 336–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Parisod, A. Salmon, T. Zerjal, M. Tenaillon, M. A. Grandbastien, and M. Ainouche, “Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina,” New Phytologist, vol. 184, no. 4, pp. 1003–1015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Yaakov and K. Kashkush, “Massive alterations of the methylation patterns around DNA transposons in the first four generations of a newly formed wheat allohexaploid,” Genome, vol. 54, no. 1, pp. 42–49, 2010. View at Publisher · View at Google Scholar
  53. T. Sasakuma, Y. Ogihara, and H. Tsujimoto, “Genome rearrangement of repetitive sequences in processes of hybridization and amphiploidization in Triticinae,” in Proceedings of the 8th International Wheat Genetics Symposium, Z. Li and Z. Xin, Eds., pp. 563–566, 1995.
  54. M. Petit, C. Guidat, J. Daniel et al., “Mobilization of retrotransposons in synthetic allotetraploid tobacco,” New Phytologist, vol. 186, no. 1, pp. 135–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Bento, H. S. Pereira, M. Rocheta, P. Gustafson, W. Viegas, and M. Silva, “Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale,” PLoS ONE, vol. 3, no. 1, Article ID e1402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. I. Mestiri, V. Chagué, A. M. Tanguy et al., “Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity,” New Phytologist, vol. 186, no. 1, pp. 86–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Parisod, K. Alix, J. Just et al., “Impact of transposable elements on the organization and function of allopolyploid genomes,” New Phytologist, vol. 186, no. 1, pp. 37–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Charles, H. Belcram, J. Just et al., “Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat,” Genetics, vol. 180, no. 2, pp. 1071–1086, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. K. M. Devos, J. K. M. Brown, and J. L. Bennetzen, “Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis,” Genome Research, vol. 12, no. 7, pp. 1075–1079, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. J. L. Bennetzen, J. Ma, and K. M. Devos, “Mechanisms of recent genome size variation in flowering plants,” Annals of Botany, vol. 95, no. 1, pp. 127–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. C. E. Grover, H. Kim, R. A. Wing, A. H. Paterson, and J. F. Wendel, “Microcolinearity and genome evolution in the AdhA region of diploid and polyploid cotton (Gossypium),” Plant Journal, vol. 50, no. 6, pp. 995–1006, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Wicker, R. Guyot, N. Yahiaoui, and B. Keller, “CACTA transposons in triticeae. A diverse family of high-copy repetitive elements,” Plant Physiology, vol. 132, no. 1, pp. 52–63, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. N. Chantret, J. Salse, F. Sabot et al., “Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops),” Plant Cell, vol. 17, no. 4, pp. 1033–1045, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Feldman and A. A. Levy, “Allopolyploidy—a shaping force in the evolution of wheat genomes,” Cytogenetic and Genome Research, vol. 109, no. 1-3, pp. 250–258, 2005. View at Publisher · View at Google Scholar · View at Scopus