About this Journal Submit a Manuscript Table of Contents
International Journal of Plant Genomics
Volume 2012 (2012), Article ID 437026, 8 pages
http://dx.doi.org/10.1155/2012/437026
Research Article

Mapping of Micro-Tom BAC-End Sequences to the Reference Tomato Genome Reveals Possible Genome Rearrangements and Polymorphisms

1Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
2Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu 292-0818, Japan
3School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan

Received 10 August 2012; Accepted 18 October 2012

Academic Editor: Pierre Sourdille

Copyright © 2012 Erika Asamizu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Arumuganathan and E. D. Earle, “Nuclear DNA content of some important plant species,” Plant Molecular Biology Reporter, vol. 9, no. 3, pp. 208–218, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. Tomato Genome Consortium, “The tomato genome sequence provides insights into fleshy fruit evolution,” Nature, vol. 485, no. 7400, pp. 635–641, 2012. View at Google Scholar
  3. M. R. Foolad, “Genome mapping and molecular breeding of tomato,” International Journal of Plant Genomics, vol. 2007, Article ID 64358, 52 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Paran, I. Goldman, S. D. Tanksley, and D. Zamir, “Recombinant inbred lines for genetic mapping in tomato,” Theoretical and Applied Genetics, vol. 90, no. 3-4, pp. 542–548, 1995. View at Google Scholar · View at Scopus
  5. T. M. Fulton, J. C. Nelson, and S. D. Tanksley, “Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, into Lycopersicon esculentum, followed through three successive backcross generations,” Theoretical and Applied Genetics, vol. 95, no. 5-6, pp. 895–902, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Frary, T. C. Nesbitt, A. Frary et al., “fw2.2: a quantitative trait locus key to the evolution of tomato fruit size,” Science, vol. 289, no. 5476, pp. 85–88, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Liu, J. Van Eck, B. Cong, and S. D. Tanksley, “A new class of regulatory genes underlying the cause of pear-shaped tomato fruit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 13302–13306, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Cong, L. S. Barrero, and S. D. Tanksley, “Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication,” Nature Genetics, vol. 40, no. 6, pp. 800–804, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Xiao, N. Jiang, E. Schaffner, E. J. Stockinger, and E. Van Der Knaap, “A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit,” Science, vol. 319, no. 5869, pp. 1527–1530, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. M. Rick, E. Kesicki, J. F. Fobes, and M. Holle, “Genetic and biosystematic studies on two new sibling species of Lycopersicon from interandean Peru,” Theoretical and Applied Genetics, vol. 47, no. 2, pp. 55–68, 1976. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Shirasawa, E. Asamizu, H. Fukuoka et al., “An interspecific linkage map of SSR and intronic polymorphism markers in tomato,” Theoretical and Applied Genetics, vol. 121, no. 4, pp. 731–739, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Shirasawa, S. Isobe, H. Hirakawa et al., “SNP discovery and linkage map construction in cultivated tomato,” DNA Research, vol. 17, no. 6, pp. 381–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Meissner, Y. Jacobson, S. Melamed et al., “A new model system for tomato genetics,” Plant Journal, vol. 12, no. 6, pp. 1465–1472, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Emmanuel and A. A. Levy, “Tomato mutants as tools for functional genomics,” Current Opinion in Plant Biology, vol. 5, no. 2, pp. 112–117, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. H. J. Sun, S. Uchii, S. Watanabe, and H. Ezura, “A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics,” Plant and Cell Physiology, vol. 47, no. 3, pp. 426–431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. G. J. Bishop, K. Harrison, and J. D. G. Jones, “The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family,” Plant Cell, vol. 8, no. 6, pp. 959–969, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Martí, C. Gisbert, G. J. Bishop, M. S. Dixon, and J. L. García-Martínez, “Genetic and physiological characterization of tomato cv. Micro-Tom,” Journal of Experimental Botany, vol. 57, no. 9, pp. 2037–2047, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Watanabe, T. Mizoguchi, K. Aoki et al., “Ethylmethanesulfonate (EMS) mutagenesis of Solanum lycopersicum cv. Micro-Tom for large-scale mutant screens,” Plant Biotechnology, vol. 24, no. 1, pp. 33–38, 2007. View at Google Scholar · View at Scopus
  19. C. Matsukura, I. Yamaguchi, M. Inamura et al., “Generation of gamma irradiation-induced mutant lines of the miniature tomato (Solanum lycopersicum L.) cultivar ‘Micro-Tom’,” Plant Biotechnology, vol. 24, no. 1, pp. 39–44, 2007. View at Google Scholar · View at Scopus
  20. T. Saito, T. Ariizumi, Y. Okabe et al., “TOMATOMA: a novel tomato mutant database distributing micro-tom mutant collections,” Plant and Cell Physiology, vol. 52, no. 2, pp. 283–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. L. A. Mueller, S. D. Tanskley, J. J. Giovannoni et al., “The tomato sequencing project, the first cornerstone of the International Solanaceae Project (SOL),” Comparative and Functional Genomics, vol. 6, no. 3, pp. 153–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Katagiri, J. Wu, Y. Ito et al., “End sequencing and chromosomal in silico mapping of BAC clones derived from an indica rice cultivar, Kasalath,” Breeding Science, vol. 54, no. 3, pp. 273–279, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. T. R. Silva Figueira, V. Okura, F. R. da Silva et al., “A BAC library of the SP80-3280 sugarcane variety (saccharum sp.) and its inferred microsynteny with the sorghum genome,” BMC Research Notes, vol. 5, p. 185, 2012. View at Google Scholar
  24. S. K. Sehgal, W. Li, P. D. Rabinowicz et al., “Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat,” BMC Plant Biology, vol. 12, p. 64, 2012. View at Google Scholar
  25. M. K. Sharma, R. Sharma, P. Cao et al., “A genome-wide survey of switchgrass genome structure and organization,” PLoS One, vol. 7, no. 4, Article ID e33892, 2012. View at Google Scholar
  26. H. Wang, R. V. Penmetsa, M. Yuan et al., “Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.),” BMC Plant Biology, vol. 12, p. 10, 2012. View at Google Scholar
  27. B. Ewing, L. Hillier, M. C. Wendl, and P. Green, “Base-calling of automated sequencer traces using phred. I. Accuracy assessment,” Genome Research, vol. 8, no. 3, pp. 175–185, 1998. View at Google Scholar · View at Scopus
  28. B. Ewing and P. Green, “Base-calling of automated sequencer traces using phred. II. Error probabilities,” Genome Research, vol. 8, no. 3, pp. 186–194, 1998. View at Google Scholar · View at Scopus
  29. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  30. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. X. B. Zhong, P. F. Fransz, J. W. V. Eden et al., “FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato,” Plant Journal, vol. 13, no. 4, pp. 507–517, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Wang, X. Tang, Z. Cheng, L. Mueller, J. Giovannoni, and S. D. Tanksley, “Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome,” Genetics, vol. 172, no. 4, pp. 2529–2540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. J. W. Scott and B. K. Harbaugh, MICRO-TOM: A Miniature Dwarf Tomato (Circular), Agricultural Experiment Station, Institute of Food and Agricultural Sciences, University of Florida, 1989.
  34. J. Yu, S. Hu, J. Wang et al., “A draft sequence of the rice genome (Oryza sativa L. ssp. indica),” Science, vol. 296, no. 5565, pp. 79–92, 2002. View at Google Scholar
  35. H. Xiao, N. Jiang, E. Schaffner, E. J. Stockinger, and E. Van Der Knaap, “A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit,” Science, vol. 319, no. 5869, pp. 1527–1530, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Aoki, K. Yano, A. Suzuki et al., “Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics,” BMC Genomics, vol. 11, no. 1, article no. 210, 2010. View at Publisher · View at Google Scholar · View at Scopus