Table of Contents
International Journal of Plant Genomics
Volume 2012 (2012), Article ID 728398, 11 pages
http://dx.doi.org/10.1155/2012/728398
Review Article

SNP Markers and Their Impact on Plant Breeding

1Department of Trait Genetics and Technologies, Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
2Department of Biotechnology Regulatory Sciences, Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA

Received 3 August 2012; Accepted 14 November 2012

Academic Editor: Ian Bancroft

Copyright © 2012 Jafar Mammadov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Weber and P. E. May, “Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction,” American Journal of Human Genetics, vol. 44, no. 3, pp. 388–396, 1989. View at Google Scholar · View at Scopus
  2. R. Ophir and D. Graur, “Patterns and rates of indel evolution in processed pseudogenes from humans and murids,” Gene, vol. 205, no. 1-2, pp. 191–202, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. D. G. Wang, J. B. Fan, C. J. Siao et al., “Large-scale identification, mapping, and genotyping of single- nucleotide polymorphisms in the human genome,” Science, vol. 280, no. 5366, pp. 1077–1082, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Botstein, R. L. White, M. Skolnick, and R. W. Davis, “Construction of a genetic linkage map in man using restriction fragment length polymorphisms,” American Journal of Human Genetics, vol. 32, no. 3, pp. 314–331, 1980. View at Google Scholar · View at Scopus
  5. P. K. Gupta, R. K. Varshney, P. C. Sharma, and B. Ramesh, “Molecular markers and their applications in wheat breeding,” Plant Breeding, vol. 118, no. 5, pp. 369–390, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Bernardo, “Molecular markers and selection for complex traits in plants: learning from the last 20 years,” Crop Science, vol. 48, no. 5, pp. 1649–1664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Welsh and M. McClelland, “Fingerprinting genomes using PCR with arbitrary primers,” Nucleic Acids Research, vol. 18, no. 24, pp. 7213–7218, 1990. View at Google Scholar · View at Scopus
  8. P. Vos, R. Hogers, M. Bleeker et al., “AFLP: a new technique for DNA fingerprinting,” Nucleic Acids Research, vol. 23, no. 21, pp. 4407–4414, 1995. View at Google Scholar · View at Scopus
  9. H. J. Jacob, K. Lindpaintner, S. E. Lincoln et al., “Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat,” Cell, vol. 67, no. 1, pp. 213–224, 1991. View at Google Scholar · View at Scopus
  10. E. S. Lander and S. Botstein, “Mapping mendelian factors underlying quantitative traits using RFLP linkage maps,” Genetics, vol. 121, no. 1, p. 185, 1989. View at Google Scholar · View at Scopus
  11. J. G. K. Williams, A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey, “DNA polymorphisms amplified by arbitrary primers are useful as genetic markers,” Nucleic Acids Research, vol. 18, no. 22, pp. 6531–6535, 1990. View at Google Scholar · View at Scopus
  12. Z. Zhang, X. Guo, B. Liu, L. Tang, and F. Chen, “Genetic diversity and genetic relationship of Jatropha curcas between China and Southeast Asian revealed by amplified fragment length polymorphisms,” African Journal of Biotechnology, vol. 10, no. 15, pp. 2825–2832, 2011. View at Google Scholar
  13. W. Powell, G. C. Machray, and J. Proven, “Polymorphism revealed by simple sequence repeats,” Trends in Plant Science, vol. 1, no. 7, pp. 215–222, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Ghosh, P. Malhotra, P. V. Lalitha, S. Guha-Mukherjee, and V. S. Chauhan, “Novel genetic mapping tools in plants: SNPs and LD-based approaches,” Plant Science, vol. 162, no. 3, pp. 329–333, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. W. Ganal, T. Altmann, and M. S. Röder, “SNP identification in crop plants,” Current Opinion in Plant Biology, vol. 12, no. 2, pp. 211–217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. B. C. Meyers, S. V. Tingey, and M. Morgante, “Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome,” Genome Research, vol. 11, no. 10, pp. 1660–1676, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. S. I. Wright, I. V. Bi, S. C. Schroeder et al., “Evolution: the effects of artificial selection on the maize genome,” Science, vol. 308, no. 5726, pp. 1310–1314, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Batley, G. Barker, H. O'Sullivan, K. J. Edwards, and D. Edwards, “Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data,” Plant Physiology, vol. 132, no. 1, pp. 84–91, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Pratap, S. Gupta, J. Kumar, and R. Solanki, “Soybean,” Technological Innovations in Major World Oil Crops, vol. 1, pp. 293–321, 2012. View at Google Scholar
  20. I. Y. Choi, D. L. Hyten, L. K. Matukumalli et al., “A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis,” Genetics, vol. 176, no. 1, pp. 685–696, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. E. R. Mardis, “The impact of next-generation sequencing technology on genetics,” Trends in Genetics, vol. 24, no. 3, pp. 133–141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Morozova and M. A. Marra, “Applications of next-generation sequencing technologies in functional genomics,” Genomics, vol. 92, no. 5, pp. 255–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. W. B. Barbazuk, S. J. Emrich, H. D. Chen, L. Li, and P. S. Schnable, “SNP discovery via 454 transcriptome sequencing,” The Plant Journal, vol. 51, no. 5, pp. 910–918, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Trick, Y. Long, J. Meng, and I. Bancroft, “Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing,” Plant Biotechnology Journal, vol. 7, no. 4, pp. 334–346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Novaes, D. R. Drost, W. G. Farmerie et al., “High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome,” BMC Genomics, vol. 9, article 312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. P. C. Bundock, F. G. Eliott, G. Ablett et al., “Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing,” Plant Biotechnology Journal, vol. 7, no. 4, pp. 347–354, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. L. Parchman, K. S. Geist, J. A. Grahnen, C. W. Benkman, and C. A. Buerkle, “Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery,” BMC Genomics, vol. 11, no. 1, article 180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Lai, C. Duran, P. J. Berkman et al., “Single nucleotide polymorphism discovery from wheat next-generation sequence data,” Plant Biotechnology Journal, vol. 10, no. 6, pp. 743–749, 2012. View at Publisher · View at Google Scholar
  29. D. Kuhn, “Design of an Illumina Infinium 6k SNPchip for genotyping two large avocado mapping populations,” in Proceedings of the 20th Conference on Plant and Animal Genome, San Diego, CA, January 2012.
  30. J. R. Russell, M. Bayer, C. Booth et al., “Identification, utilisation and mapping of novel transcriptome-based markers from blackcurrant (Ribes nigrum),” BMC Plant Biology, vol. 11, article 147, 2011. View at Publisher · View at Google Scholar
  31. E. Hodges, Z. Xuan, V. Balija et al., “Genome-wide in situ exon capture for selective resequencing,” Nature Genetics, vol. 39, no. 12, pp. 1522–1527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. N. M. Springer, K. Ying, Y. Fu et al., “Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content,” PLoS Genetics, vol. 5, no. 11, Article ID e1000734, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. R. K. Varshney, “Gene-based marker systems in plants: high throughput approaches for marker discovery and genotyping,” in Molecular Techniques in Crop Improvement, S. M. Jain and D. S. Brar, Eds., pp. 119–142, 2009. View at Google Scholar
  34. A. Dean, “On a chromosome far, far away: LCRs and gene expression,” Trends in Genetics, vol. 22, no. 1, pp. 38–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Yuan, P. J. SanMiguel, and J. L. Bennetzen, “High-Cot sequence analysis of the maize genome,” The Plant Journal, vol. 34, no. 2, pp. 249–255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Emberton, J. Ma, Y. Yuan, P. SanMiguel, and J. L. Bennetzen, “Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries,” Genome Research, vol. 15, no. 10, pp. 1441–1446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. D. T. Okou, K. M. Steinberg, C. Middle, D. J. Cutler, T. J. Albert, and M. E. Zwick, “Microarray-based genomic selection for high-throughput resequencing,” Nature Methods, vol. 4, no. 11, pp. 907–909, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. N. J. van Orsouw, R. C. J. Hogers, A. Janssen et al., “Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes,” PLoS ONE, vol. 2, no. 11, Article ID e1172, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. N. A. Baird, P. D. Etter, T. S. Atwood et al., “Rapid SNP discovery and genetic mapping using sequenced RAD markers,” PLoS ONE, vol. 3, no. 10, Article ID e3376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. J. A. Mammadov, W. Chen, R. Ren et al., “Development of highly polymorphic SNP markers from the complexity reduced portion of maize (Zea mays L.) genome for use in marker-assisted breeding,” Theoretical and Applied Genetics, vol. 121, no. 3, pp. 577–588, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Chutimanitsakun, R. W. Nipper, A. Cuesta-Marcos et al., “Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley,” BMC Genomics, vol. 12, article 4, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Yu, W. Xie, J. Wang et al., “Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers,” PLoS ONE, vol. 6, no. 3, Article ID e17595, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Bus, J. Hecht, B. Huettel, R. Reinhardt, and B. Stich, “High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing,” BMC Genomics, vol. 13, no. 1, p. 281, 2012. View at Google Scholar
  44. J. Tang, J. A. M. Leunissen, R. E. Voorrips, C. G. van der Linden, and B. Vosman, “HaploSNPer: a web-based allele and SNP detection tool,” BMC Genetics, vol. 9, article 23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Narechania, M. A. Gore, E. S. Buckler et al., “Large-scale discovery of gene-enriched SNPs,” The Plant Genome, vol. 2, no. 2, pp. 121–133, 2009. View at Google Scholar
  46. J. C. Nelson, S. Wang, Y. Wu et al., “Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum,” BMC Genomics, vol. 12, article 352, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. R. J. Elshire, J. C. Glaubitz, Q. Sun et al., “A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species,” PLoS ONE, vol. 6, no. 5, Article ID e19379, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. S. R. Browning and B. L. Browning, “Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering,” American Journal of Human Genetics, vol. 81, no. 5, pp. 1084–1097, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. B. N. Howie, P. Donnelly, and J. Marchini, “A flexible and accurate genotype imputation method for the next generation of genome-wide association studies,” PLoS Genetics, vol. 5, no. 6, Article ID e1000529, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. X. Huang, X. Wei, T. Sang et al., “Genome-wide asociation studies of 14 agronomic traits in rice landraces,” Nature Genetics, vol. 42, no. 11, pp. 961–967, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Marchini and B. Howie, “Genotype imputation for genome-wide association studies,” Nature Reviews Genetics, vol. 11, no. 7, pp. 499–511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. J. B. Fan, A. Oliphant, R. Shen et al., “Highly parallel SNP genotyping,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 68, pp. 69–78, 2003. View at Google Scholar · View at Scopus
  53. F. J. Steemers and K. L. Gunderson, “Whole genome genotyping technologies on the BeadArray platform,” Biotechnology Journal, vol. 2, no. 1, pp. 41–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz, “Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization,” Genome Research, vol. 4, no. 6, pp. 357–362, 1995. View at Google Scholar · View at Scopus
  55. S. P. Kumpatla, R. Buyyarapu, I. Y. Abdurakhmonov, and J. A. Mammadov, “Genomics-assisted plant breeding in the 21st century: technological advances and progress,” in Plant Breeding, I. Y. Abdurakhmonov, Ed., pp. 131–184.
  56. R. Buyyarapu, R. Ren, S. Kumpatla et al., “In silico discovery and validation of SNP markers for molecular breeding in cotton,” in Proceedings of the 19th Conference on Plant & Animal Genome, San Diego, Calif, USA, January 2011.
  57. S. D. Tanksley, “Mapping polygenes,” Annual Review of Genetics, vol. 27, pp. 205–233, 1993. View at Google Scholar · View at Scopus
  58. D. Bhattramakki, M. Dolan, M. Hanafey et al., “Insertion-deletion polymorphisms in 3′ regions of maize genes occur frequently and can be used as highly informative genetic markers,” Plant Molecular Biology, vol. 48, no. 5-6, pp. 539–547, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. E. S. Jones, H. Sullivan, D. Bhattramakki, and J. S. C. Smith, “A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.),” Theoretical and Applied Genetics, vol. 115, no. 3, pp. 361–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Konishi, T. Izawa, S. Y. Lin et al., “An SNP caused loss of seed shattering during rice domestication,” Science, vol. 312, no. 5778, pp. 1392–1396, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. A. S. Iyer and S. R. McCouch, “The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance,” Molecular Plant-Microbe Interactions, vol. 17, no. 12, pp. 1348–1354, 2004. View at Google Scholar · View at Scopus
  62. E. Drenkard, B. G. Richter, S. Rozen et al., “A simple procedure for the analysis of single nucleotide polymorphism facilitates map-based cloning in Arabidopsis,” Plant Physiology, vol. 124, no. 4, pp. 1483–1492, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Garg, P. Green, and D. A. Nickerson, “Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags,” Genome Research, vol. 9, no. 11, pp. 1087–1092, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Nasu, J. Suzuki, R. Ohta et al., “Search for and analysis of single nucleotide polymorphisms (SNPS) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers,” DNA Research, vol. 9, no. 5, pp. 163–171, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Hayashi, N. Hashimoto, M. Daigen, and I. Ashikawa, “Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus,” Theoretical and Applied Genetics, vol. 108, no. 7, pp. 1212–1220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Ashikari and M. Matsuoka, “Identification, isolation and pyramiding of quantitative trait loci for rice breeding,” Trends in Plant Science, vol. 11, no. 7, pp. 344–350, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. K. K. Jena and D. J. Mackill, “Molecular markers and their use in marker-assisted selection in rice,” Crop Science, vol. 48, no. 4, pp. 1266–1276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. R. K. Varshney, D. A. Hoisington, and A. K. Tyagi, “Advances in cereal genomics and applications in crop breeding,” Trends in Biotechnology, vol. 24, no. 11, pp. 490–499, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. E. S. Buckler, J. B. Holland, P. J. Bradbury et al., “The genetic architecture of maize flowering time,” Science, vol. 325, no. 5941, pp. 714–718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. J. A. Poland, P. J. Bradbury, E. S. Buckler, and R. J. Nelson, “Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 17, pp. 6893–6898, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. P. Zheng, W. B. Allen, K. Roesler et al., “A phenylalanine in DGAT is a key determinant of oil content and composition in maize,” Nature Genetics, vol. 40, no. 3, pp. 367–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. E. Akhunov, C. Nicolet, and J. Dvorak, “Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay,” Theoretical and Applied Genetics, vol. 119, no. 3, pp. 507–517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. A. M. Allen, G. L. Barker, S. T. Berry et al., “Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.),” Plant Biotechnology Journal, vol. 9, no. 9, pp. 1086–1099, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Bérard, M. C. Le Paslier, M. Dardevet et al., “High-throughput single nucleotide polymorphism genotyping in wheat (Triticum spp.),” Plant Biotechnology Journal, vol. 7, no. 4, pp. 364–374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. M. O. Winfield, P. A. Wilkinson, A. M. Allen et al., “Targeted re-sequencing of the allohexaploid wheat exome,” Plant Biotechnology Journal, vol. 10, no. 6, pp. 733–742, 2012. View at Publisher · View at Google Scholar
  76. E. S. Lagudah, S. G. Krattinger, S. Herrera-Foessel et al., “Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens,” Theoretical and Applied Genetics, vol. 119, no. 5, pp. 889–898, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Buerstmayr, T. Ban, and J. A. Anderson, “QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review,” Plant Breeding, vol. 128, no. 1, pp. 1–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. A. N. Bernardo, H. Ma, D. Zhang, and G. Bai, “Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance,” Molecular Breeding, vol. 29, no. 2, pp. 477–488, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. P. K. Gupta, P. Langridge, and R. R. Mir, “Marker-assisted wheat breeding: present status and future possibilities,” Molecular Breeding, vol. 26, no. 2, pp. 145–161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. K. S. Kim, S. Bellendir, K. A. Hudson et al., “Fine mapping the soybean aphid resistance gene Rag1 in soybean,” Theoretical and Applied Genetics, vol. 120, no. 5, pp. 1063–1071, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. K. S. Kim, C. B. Hill, G. L. Hartman, D. L. Hyten, M. E. Hudson, and B. W. Diers, “Fine mapping of the soybean aphid-resistance gene Rag2 in soybean PI 200538,” Theoretical and Applied Genetics, vol. 121, no. 3, pp. 599–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. B. K. Ha, R. S. Hussey, and H. R. Boerma, “Development of SNP assays for marker-assisted selection of two southern root-knot nematode resistance QTL in soybean,” Crop Science, vol. 47, no. 2, pp. S73–S82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. X. Hu, M. Sullivan-Gilbert, M. Gupta, and S. A. Thompson, “Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.),” Theoretical and Applied Genetics, vol. 113, no. 3, pp. 497–507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Lehmensiek, M. W. Sutherland, and R. B. McNamara, “The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley,” Theoretical and Applied Genetics, vol. 117, no. 5, pp. 721–728, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. M. K. Grimmer, S. Trybush, S. Hanley, S. A. Francis, A. Karp, and M. J. C. Asher, “An anchored linkage map for sugar beet based on AFLP, SNP and RAPD markers and QTL mapping of a new source of resistance to Beet necrotic yellow vein virus,” Theoretical and Applied Genetics, vol. 114, no. 7, pp. 1151–1160, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. M. K. Grimmer, T. Kraft, S. A. Francis, and M. J. C. Asher, “QTL mapping of BNYVV resistance from the WB258 source in sugar beet,” Plant Breeding, vol. 127, no. 6, pp. 650–652, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. W. Muchero, N. N. Diop, P. R. Bhat et al., “A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 43, pp. 18159–18164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. G. Jander, S. R. Norris, S. D. Rounsley, D. F. Bush, I. M. Levin, and R. L. Last, “Arabidopsis map-based cloning in the post-genome era,” Plant Physiology, vol. 129, no. 2, pp. 440–450, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. I. Y. Abdurakhmonov and A. Abdukarimov, “Application of association mapping to understanding the genetic diversity of plant germplasm resources,” International Journal of Plant Genomics, vol. 2008, Article ID 574927, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. D. Hall, C. Tegström, and P. K. Ingvarsson, “Using association mapping to dissect the genetic basis of complex traits in plants,” Briefings in Functional Genomics and Proteomics, vol. 9, no. 2, pp. 157–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Myles, J. Peiffer, P. J. Brown et al., “Association mapping: critical considerations shift from genotyping to experimental design,” Plant Cell, vol. 21, no. 8, pp. 2194–2202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Gore, E. S. Buckler, J. Yu, and C. Zhu, “Status and prospects of association mapping in plants,” The Plant Genome, vol. 1, no. 1, pp. 5–20, 2008. View at Google Scholar
  93. J. A. Rafalski, “Association genetics in crop improvement,” Current Opinion in Plant Biology, vol. 13, no. 2, pp. 174–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Beló, P. Zheng, S. Luck et al., “Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize,” Molecular Genetics and Genomics, vol. 279, no. 1, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. F. Tian, P. J. Bradbury, P. J. Brown et al., “Genome-wide association study of leaf architecture in the maize nested association mapping population,” Nature Genetics, vol. 43, no. 2, pp. 159–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. J. K. Roy, K. P. Smith, G. J. Muehlbauer, S. Chao, T. J. Close, and B. J. Steffenson, “Association mapping of spot blotch resistance in wild barley,” Molecular Breeding, vol. 26, no. 2, pp. 243–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Pajerowska-Mukhtar, B. Stich, U. Achenbach et al., “Single nucleotide polymorphisms in the Allene Oxide Synthase 2 gene are associated with field resistance to late blight in populations of tetraploid potato cultivars,” Genetics, vol. 181, no. 3, pp. 1115–1127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. K. L. Kump, P. J. Bradbury, R. J. Wisser et al., “Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population,” Nature Genetics, vol. 43, no. 2, pp. 163–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. A. L. Harper, M. Trick, J. Higgins et al., “Associative transcriptomics of traits in the polyploid crop species Brassica napus,” Nature Biotechnology, vol. 30, no. 8, pp. 798–802, 2012. View at Publisher · View at Google Scholar
  100. Y. Xu and J. H. Crouch, “Marker-assisted selection in plant breeding: from publications to practice,” Crop Science, vol. 48, no. 2, pp. 391–407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. B. C. Y. Collard and D. J. Mackill, “Marker-assisted selection: an approach for precision plant breeding in the twenty-first century,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1491, pp. 557–572, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. E. M. Septiningsih, A. M. Pamplona, D. L. Sanchez et al., “Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond,” Annals of Botany, vol. 103, no. 2, pp. 151–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Jin, Y. Lu, Y. Shao et al., “Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice (Oryza sativa L.),” Journal of Cereal Science, vol. 51, no. 1, pp. 159–164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Asif, T. Shaheen, N. Tabbasam, Y. Zafar, and A. H. Paterson, “Marker-assisted breeding in higher plants,” Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation, vol. 6, pp. 39–76, 2011. View at Google Scholar
  105. R. Naidoo, G. M. F. Watson, J. Derera, P. Tongoona, and M. Laing, “Marker-assisted selection for low phytic acid (lpa1-1) with single nucleotide polymorphism marker and amplified fragment length polymorphisms for background selection in a maize backcross breeding programme,” Molecular Breeding, vol. 30, pp. 1207–1217, 2012. View at Google Scholar
  106. S. R. Eathington, T. M. Crosbie, M. D. Edwards, R. S. Reiter, and J. K. Bull, “Molecular markers in a commercial breeding program,” Crop Science, vol. 47, supplement 3, pp. S154–S163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. M. L. Rosso, S. A. Burleson, L. M. Maupin, and K. M. Rainey, “Development of breeder-friendly markers for selection of MIPS1 mutations in soybean,” Molecular Breeding, vol. 28, no. 1, pp. 127–132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. J. M. Ribaut and M. Ragot, “Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives,” Journal of Experimental Botany, vol. 58, no. 2, pp. 351–360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. R. Ren, B. A. Nagel, S. P. Kumpatla et al., “Maize Cytoplasmic Male Sterility (Cms) C-Type Restorer Rf4 Gene, Molecular Markers And Their Use,” Google Patents, 2011.
  110. M. Ragot, M. Lee, E. Guimarães et al., “Marker-assisted selection in maize: current status, potential, limitations and perspertives from the private and public sectors,” Marker-Assisted Selection, Current Status and Future Perspectives in Crops, Livestock, Forestry and Fish, pp. 117–150, 2007. View at Google Scholar
  111. H. Riday, “Paternity testing: a non-linkage based marker-assisted selection scheme for outbred forage species,” Crop Science, vol. 51, no. 2, pp. 631–641, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. D. W. Gjertson, C. H. Brenner, M. P. Baur et al., “ISFG: recommendations on biostatistics in paternity testing,” Forensic Science International, vol. 1, no. 3-4, pp. 223–231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. T. H. E. Meuwissen, B. J. Hayes, and M. E. Goddard, “Prediction of total genetic value using genome-wide dense marker maps,” Genetics, vol. 157, no. 4, pp. 1819–1829, 2001. View at Google Scholar · View at Scopus
  114. E. L. Heffner, M. E. Sorrells, and J. L. Jannink, “Genomic selection for crop improvement,” Crop Science, vol. 49, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. Z. Shengqiang, J. C. M. Dekkers, R. L. Fernando, and J. L. Jannink, “Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study,” Genetics, vol. 182, no. 1, pp. 355–364, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. B. Hayes and M. Goddard, “Genome-wide association and genomic selection in animal breeding,” Genome, vol. 53, no. 11, pp. 876–883, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. J. L. Jannink, A. J. Lorenz, and H. Iwata, “Genomic selection in plant breeding: from theory to practice,” Briefings in Functional Genomics and Proteomics, vol. 9, no. 2, pp. 166–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. A. M. Mastrangelo, E. Mazzucotelli, D. Guerra, P. Vita, and L. Cattivelli, “Improvement of drought resistance in crops: from conventional breeding to genomic selection,” Crop Stress and Its Management, pp. 225–259, 2012. View at Google Scholar
  119. M. D. V. Resende, M. F. R. Resende Jr., C. P. Sansaloni et al., “Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees,” New Phytologist, vol. 194, no. 1, pp. 116–128, 2012. View at Publisher · View at Google Scholar
  120. Y. Zhao, M. Gowda, W. Liu et al., “Accuracy of genomic selection in European maize elite breeding populations,” Theoretical and Applied Genetics, vol. 124, no. 4, pp. 769–776, 2012. View at Publisher · View at Google Scholar