Table of Contents
International Journal of Proteomics
Volume 2010, Article ID 283863, 12 pages
http://dx.doi.org/10.1155/2010/283863
Review Article

p73-Binding Partners and Their Functional Significance

1Laboratory of Anti-tumor Research, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
2Laboratory of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, 666-2 Nitona-Cho, Chuo-ku, Chiba 260-8717, Japan

Received 27 September 2010; Accepted 26 October 2010

Academic Editor: Jen-Fu Chiu

Copyright © 2010 Toshinori Ozaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kaghad, H. Bonnet, and H. Bonnet, “Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers,” Cell, vol. 90, no. 4, pp. 809–819, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Yang, M. Kaghad, and M. Kaghad, “p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities,” Molecular Cell, vol. 2, no. 3, pp. 305–316, 1998. View at Google Scholar · View at Scopus
  3. M. Osada, M. Ohba, and M. Ohba, “Cloning and functional analysis of human p51, which structurally and functionally resembles p53,” Nature Medicine, vol. 4, no. 7, pp. 839–843, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. C. D. Thanos and J. U. Bowie, “p53 Family members p63 and p73 are SAM domain-containing proteins,” Protein Science, vol. 8, no. 8, pp. 1708–1710, 1999. View at Google Scholar · View at Scopus
  5. A. Yang and F. McKeon, “p63 and p73: p53 mimics, menaces and more,” Nature Reviews Molecular Cell Biology, vol. 1, no. 3, pp. 199–207, 2000. View at Google Scholar · View at Scopus
  6. G. Melino, V. De Laurenzi, and K. H. Vousden, “p73: friend or foe in tumorigenesis,” Nature Reviews Cancer, vol. 2, no. 8, pp. 605–615, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. T. Ozaki and A. Nakagawara, “p73, a sophisticated p53 family member in the cancer world,” Cancer Science, vol. 96, no. 11, pp. 729–737, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. C. A. Jost, M. C. Marin, and W. G. Kaelin Jr., “p73 is a human p53-related protein that can induce apoptosis,” Nature, vol. 389, no. 6647, pp. 191–194, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. F. Rödicker and B. M. Pützer, “p73 is effective in p53-null pancreatic cancer cells resistant to wild-type TP53 gene replacement,” Cancer Research, vol. 63, no. 11, pp. 2737–2741, 2003. View at Google Scholar · View at Scopus
  10. G. M. Brodeur, G. S. Sekhon, and M. N. Goldstein, “Chromosomal aberrations in human neuroblastomas,” Cancer, vol. 40, no. 5, pp. 2256–2263, 1977. View at Google Scholar · View at Scopus
  11. G. B. Balaban, M. Herlyn, W. H. Clark Jr., and P. C. Nowell, “Karyotypic evolution in human malignant melanoma,” Cancer Genetics and Cytogenetics, vol. 19, no. 1-2, pp. 113–122, 1986. View at Google Scholar · View at Scopus
  12. G. Sozzi, M. G. Bertoglio, S. Pilotti, F. Rilke, M. A. Pierotti, and G. Della Porta, “Cytogenetic studies in primary and metastatic neuroendocrine Merkel cell carcinoma,” Cancer Genetics and Cytogenetics, vol. 30, no. 1, pp. 151–158, 1988. View at Google Scholar · View at Scopus
  13. N. C. Dracopoli, P. Harnett, S. J. Bale, B. Z. Stanger, M. A. Tucker, D. E. Housman, and R. F. Kefford, “Loss of alleles from the distal short arm of chromosome 1 occurs late in melanoma tumor progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 12, pp. 4614–4618, 1989. View at Google Scholar · View at Scopus
  14. R. A. Ross, B. A. Spengler, C. Domenech, M. Porubcin, W. J. Rettig, and J. L. Biedler, “Human neuroblastoma I-type cells are malignant neural crest stem cells,” Cell Growth and Differentiation, vol. 6, no. 4, pp. 449–456, 1995. View at Google Scholar · View at Scopus
  15. M. Hollstein, B. Shomer, M. Greenblatt, T. Soussi, E. Hovig, R. Montesano, and C. C. Harris, “Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation,” Nucleic Acids Research, vol. 24, no. 1, pp. 141–146, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Hollstein, M. Hergenhahn, Q. Yang, H. Bartsch, Z.-Q. Wang, and P. Hainaut, “New approaches to understanding p53 gene tumor mutation spectra,” Mutation Research, vol. 431, no. 2, pp. 199–209, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Ikawa, A. Nakagawara, and Y. Ikawa, “p53 family genes: structural comparison, expression and mutation,” Cell Death and Differentiation, vol. 6, no. 12, pp. 1154–1161, 1999. View at Google Scholar · View at Scopus
  18. A. Yang, N. Walker, and N. Walker, “p73-Deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumoursp73-Deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours,” Nature, vol. 404, no. 6773, pp. 99–103, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. L. A. Donehower, M. Harvey, B. L. Slagle, M. J. McArthur, C. A. Montgomery Jr., J. S. Butel, and A. Bradley, “Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours,” Nature, vol. 356, no. 6366, pp. 215–221, 1992. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. E. R. Flores, K. Y. Tsai, D. Crowley, S. Sengupta, A. Yang, F. McKeon, and T. Jacks, “p63 and p73 are required for p53-dependent apoptosis in response to DNA damage,” Nature, vol. 416, no. 6880, pp. 560–564, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. E. R. Flores, S. Sengupta, and S. Sengupta, “Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family,” Cancer Cell, vol. 7, no. 4, pp. 363–373, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. V. De Laurenzi, A. Costanzo, and A. Costanzo, “Two new p73 splice variants, γ and δ, with different transcriptional activity,” Journal of Experimental Medicine, vol. 188, no. 9, pp. 1763–1768, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. V. De Laurenzi, M. V. Catani, and M. V. Catani, “Additional complexity in p73: induction by mitogens in lymphoid cells and identification of two new splicing variants ε and ζ,” Cell Death and Differentiation, vol. 6, no. 5, pp. 389–390, 1999. View at Google Scholar · View at Scopus
  24. Y. Ueda, M. Hijikata, S. Takagi, T. Chiba, and K. Shimotohno, “New p73 variants with altered C-terminal structures have varied transcriptional activities,” Oncogene, vol. 18, no. 35, pp. 4993–4998, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. C. D. Pozniak, S. Radinovic, A. Yang, F. McKeon, D. R. Kaplan, and F. D. Miller, “An anti-apoptotic role for the p53 family member, p73, during developmental neuron death,” Science, vol. 289, no. 5477, pp. 304–306, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. O. Ishimoto, C. Kawahara, K. Enjo, M. Obinata, T. Nukiwa, and S. Ikawa, “Possible oncogenic potential of ΔNp73: a newly identified isoform of human p73,” Cancer Research, vol. 62, no. 3, pp. 636–641, 2002. View at Google Scholar · View at Scopus
  27. T. Stiewe, S. Zimmermann, A. Frilling, H. Esche, and B. M. Pützer, “Transactivation-deficient δTA-p73 acts as an oncogene,” Cancer Research, vol. 62, no. 13, pp. 3598–3602, 2002. View at Google Scholar · View at Scopus
  28. I. Casciano, K. Mazzocco, and K. Mazzocco, “Expression of ΔNp73 is a molecular marker for adverse outcome in neuroblastoma patients,” Cell Death and Differentiation, vol. 9, no. 3, pp. 246–251, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. A. I. Zaika, N. Slade, and N. Slade, “ΔNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors,” Journal of Experimental Medicine, vol. 196, no. 6, pp. 765–780, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. C. J. Di Como, C. Gaiddon, and C. Prives, “p73 function is inhibited by tumor-derived p53 mutants in mammalian cells,” Molecular and Cellular Biology, vol. 19, no. 2, pp. 1438–1449, 1999. View at Google Scholar · View at Scopus
  31. G. Liu, S. Nozell, H. Xiao, and X. Chen, “ΔNp73β is active in transactivation and growth suppression,” Molecular and Cellular Biology, vol. 24, no. 2, pp. 487–501, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. M. S. Irwin, K. Kondo, M. C. Marin, L. S. Cheng, W. C. Hahn, and W. G. Kaelin Jr., “Chemosensitivity linked to p73 function,” Cancer Cell, vol. 3, no. 4, pp. 403–410, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. T. J. Grob, U. Novak, and U. Novak, “Human ΔNp73 regulates a dominant negative feedback loop for TAp73 and p53,” Cell Death and Differentiation, vol. 8, no. 12, pp. 1213–1223, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. T. Nakagawa, M. Takahashi, and M. Takahashi, “Autoinhibitory regulation of p73 by ΔNp73 to modulate cell survival and death through a p73-specific target element within the ΔNp73 promoter,” Molecular and Cellular Biology, vol. 22, no. 8, pp. 2575–2585, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Stiewe, C. C. Theseling, and B. M. Pützer, “Transactivation-deficient ΔTA-p73 inhibits p53 by direct competition for DNA binding. Implications for tumorigenesis,” The Journal of Biological Chemistry, vol. 277, no. 16, pp. 14177–14185, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. C. Maisse, E. Munarriz, D. Barcaroli, G. Melino, and V. De Laurenzi, “DNA damage induces the rapid and selective degradation of the ΔNp73 isoform, allowing apoptosis to occur,” Cell Death and Differentiation, vol. 11, no. 6, pp. 685–687, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. B. S. Sayan, A. L. Yang, F. Conforti et al., “Differential control of TAp73 and DeltaNp73 protein stability by the ring finger ubiquitin ligase PIR2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, pp. 12877–12882, 2010. View at Google Scholar
  38. T. Ohtsuka, H. Ryu, Y. A. Minamishima, A. Ryo, and S. W. Lee, “Modulation of p53 and p73 levels by cyclin G: implication of a negative feedback regulation,” Oncogene, vol. 22, no. 11, pp. 1678–1687, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. C.-W. Lee and N. B. La Thangue, “Promoter specificity and stability control of the p53-related protein p73,” Oncogene, vol. 18, no. 29, pp. 4171–4181, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. E. Bálint, S. Bates, and K. H. Vousden, “Mdm2 binds p73α without targeting degradation,” Oncogene, vol. 18, no. 27, pp. 3923–3929, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. M. Dobbelstein, S. Wienzek, C. König, and J. Roth, “Inactivation of the p53-homologue p73 by the mdm2-oncoprotein,” Oncogene, vol. 18, no. 12, pp. 2101–2106, 1999. View at Google Scholar · View at Scopus
  42. W. M. Ongkeko, X. Q. Wang, and X. Q. Wang, “MDM2 and MDMX bind and stabilize the p53-related protein p73,” Current Biology, vol. 9, no. 15, pp. 829–832, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Zeng, L. Chen, and L. Chen, “MDM2 suppresses p73 function without promoting p73 degradation,” Molecular and Cellular Biology, vol. 19, no. 5, pp. 3257–3266, 1999. View at Google Scholar · View at Scopus
  44. J. Gu, L. Nie, D. Wiederschain, and Z.-M. Yuan, “Identification of p53 sequence elements that are required for MDM2-mediated nuclear export,” Molecular and Cellular Biology, vol. 21, no. 24, pp. 8533–8546, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. M. Rossi, V. De Laurenzi, and V. De Laurenzi, “The ubiquitin-protein ligase Itch regulates p73 stability,” EMBO Journal, vol. 24, no. 4, pp. 836–848, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. G. Asher, P. Tsvetkov, C. Kahana, and Y. Shaul, “A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73,” Genes and Development, vol. 19, no. 3, pp. 316–321, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. D. Levy, Y. Adamovich, N. Reuven, and Y. Shaul, “The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73,” Cell Death and Differentiation, vol. 14, no. 4, pp. 743–751, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. A. Oberst, M. Malatesta, and M. Malatesta, “The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 27, pp. 11280–11285, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. C. Ponting, J. Schultz, and P. Bork, “SPRY domains in ryanodine receptors (Ca2+-release channels),” Trends in Biochemical Sciences, vol. 22, no. 6, pp. 193–194, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Peschiaroli, F. Scialpi, F. Bernassola, M. Pagano, and G. Melino, “The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73,” Oncogene, vol. 28, no. 35, pp. 3157–3166, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. C. Zhang, X. Yuan, L. Yue et al., “PIASy interacts with p73alpha and regulates cell cycle in HEK293 cells,” Cellular Immunology, vol. 263, pp. 235–240, 2010. View at Google Scholar
  52. K. Miyazaki, T. Ozaki, and T. Ozaki, “A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity,” Biochemical and Biophysical Research Communications, vol. 308, no. 1, pp. 106–113, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Koida, T. Ozaki, and T. Ozaki, “Inhibitory role of Plk1 in the regulation of p73-dependent apoptosis through physical interaction and phosphorylation,” The Journal of Biological Chemistry, vol. 283, no. 13, pp. 8555–8563, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. E. Munarriz, D. Bano, A. E. Sayan, M. Rossi, G. Melino, and P. Nicotera, “Calpain cleavage regulates the protein stability of p73,” Biochemical and Biophysical Research Communications, vol. 333, no. 3, pp. 954–960, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. Z.-M. Yuan, Y. Huang, Y. Whang, C. Sawyers, R. Weichselbaum, S. Kharbanda, and D. Kufe, “Role for c-Abl tyrosine kinase in growth arrest response to DNA damage,” Nature, vol. 382, no. 6588, pp. 272–274, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. S. Kharbanda, R. Ren, P. Pandey, T. D. Shafman, S. M. Feller, F. R. Weichselbaum, and D. W. Kufe, “Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents,” Nature, vol. 376, no. 6543, pp. 785–788, 1995. View at Google Scholar · View at Scopus
  57. Z.-G. Liu, R. Baskaran, E. T. Lea-Chou, L. D. Wood, Y. Chen, M. Karin, and J. Y. J. Wang, “Three distinct signalling responses by murine fibroblasts to genotoxic stress,” Nature, vol. 384, no. 6606, pp. 273–276, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. R. Baskaran, L. D. Wood, and L. D. Wood, “Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation,” Nature, vol. 387, no. 6632, pp. 516–519, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. T. Shafman, K. K. Khanna, and K. K. Khanna, “Interaction between ATM protein and c-Abl in response to DNA damage,” Nature, vol. 387, no. 6632, pp. 520–523, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. J. Gong, A. Costanzo, H.-Q. Yang, G. Mellno, W. G. Kaelin Jr., M. Levrero, and J. Y. J. Wang, “The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage,” Nature, vol. 399, no. 6738, pp. 806–809, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. R. Agami, G. Blandino, M. Oren, and Y. Shaul, “Interaction of c-Abl and p73α and their collaboration to induce apoptosis,” Nature, vol. 399, no. 6738, pp. 809–812, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. Z.-M. Yuan, H. Shioya, and H. Shioya, “p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage,” Nature, vol. 399, no. 6738, pp. 814–817, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. M. Ben-Yehoyada, I. Ben-Dor, and Y. Shaul, “c-Abl tyrosine kinase selectively regulates p73 nuclear matrix association,” The Journal of Biological Chemistry, vol. 278, no. 36, pp. 34475–34482, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. P. Pandey, J. Raingeaud, M. Kaneki, R. Weichselbaum, R. J. Davis, D. Kufe, and S. Kharbanda, “Activation of p38 mitogen-activated protein kinase by c-Abl-dependent and -independent mechanisms,” The Journal of Biological Chemistry, vol. 271, no. 39, pp. 23775–23779, 1996. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Sanchez-Prieto, V. J. Sanchez-Arevalo, J.-M. Servitja, and J. S. Gutkind, “Regulation of p73 by c-Abl through the p38 MAP kinase pathway,” Oncogene, vol. 21, no. 6, pp. 974–979, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Mantovani, S. Piazza, and S. Piazza, “Pin1 links the activities of c-Abl and p300 in regulating p73 function,” Molecular Cell, vol. 14, no. 5, pp. 625–636, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. Z.-M. Yuan, T. Utsugisawa, and T. Utsugisawa, “Activation of protein kinase Cδ by the c-Abl tyrosine kinase in response to ionizing radiation,” Oncogene, vol. 16, no. 13, pp. 1643–1648, 1998. View at Google Scholar · View at Scopus
  68. J. Ren, R. Datta, and R. Datta, “p73β is regulated by protein kinase Cδ catalytic fragment generated in the apoptotic response to DNA damage,” The Journal of Biological Chemistry, vol. 277, no. 37, pp. 33758–33765, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. N. Walworth, S. Davey, and D. Beach, “Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2,” Nature, vol. 363, no. 6427, pp. 368–371, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. H. Murakami and H. Okayama, “A kinase from fission yeast responsible for blocking mitosis in S phase,” Nature, vol. 374, no. 6525, pp. 817–819, 1995. View at Google Scholar · View at Scopus
  71. S. Gonzalez, C. Prives, and C. Cordon-Cardo, “p73α regulation by Chk1 in Response to DNA Damage,” Molecular and Cellular Biology, vol. 23, no. 22, pp. 8161–8171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Urist, T. Tanaka, M. V. Poyurovsky, and C. Prives, “p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2,” Genes and Development, vol. 18, no. 24, pp. 3041–3054, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. T. Stiewe and B. M. Putzer, “Role of the p53-homologue p73 in E2F1-induced apoptosis,” Nature Genetics, vol. 26, no. 4, pp. 464–469, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. M. Irwin, M. C. Marin, and M. C. Marin, “Role for the p53 homologue p73 in E2F-1-induced apoptosis,” Nature, vol. 407, no. 6804, pp. 645–648, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. N. A. Lissy, P. K. Davis, M. Irwin, W. G. Kaelin, and S. F. Dowdy, “A common E2F-1 and p73 pathway mediates cell death induced by TCR activation,” Nature, vol. 407, no. 6804, pp. 642–645, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. S. Kharbanda, P. Pandey, R. Ren, B. Mayer, L. Zon, and D. Kufe, “c-Abl activation regulates induction of the SEK1/stress-activated protein kinase pathway in the cellular response to 1-β-D-arabinofuranosylcytosine,” The Journal of Biological Chemistry, vol. 270, no. 51, pp. 30278–30281, 1995. View at Google Scholar · View at Scopus
  77. B. W. Zanke, K. Boudreau, and K. Boudreau, “The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat,” Current Biology, vol. 6, no. 5, pp. 606–613, 1996. View at Google Scholar · View at Scopus
  78. E. V. Jones, M. J. Dickman, and A. J. Whitmarsh, “Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase,” Biochemical Journal, vol. 405, no. 3, pp. 617–623, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. N. Takada, T. Ozaki, S. Ichimiya, S. Todo, and A. Nakagawara, “Identification of a transactivation activity in the COOH-terminal region of p73 which is impaired in the naturally occurring mutants found in human neuroblastomas,” Cancer Research, vol. 59, no. 12, pp. 2810–2814, 1999. View at Google Scholar · View at Scopus
  80. U. Nyman, P. Vlachos, A. Cascante, O. Hermanson, B. Zhivotovsky, and B. Joseph, “Protein kinase C-dependent phosphorylation regulates the cell cycle-inhibitory function of the p73 carboxy terminus transactivation domain,” Molecular and Cellular Biology, vol. 29, no. 7, pp. 1814–1825, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. M. Karin and Y. Ben-Neriah, “Phosphorylation meets ubiquitination: the control of NF-κB activity,” Annual Review of Immunology, vol. 18, pp. 621–663, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. K. Furuya, T. Ozaki, and T. Ozaki, “Stabilization of p73 by nuclear IκB kinase-α mediates cisplatin-induced apoptosis,” The Journal of Biological Chemistry, vol. 282, no. 25, pp. 18365–18378, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. K. Yoshida, T. Ozaki, and T. Ozaki, “ATM-dependent nuclear accumulation of IKK-α plays an important role in the regulation of p73-mediated apoptosis in response to cisplatin,” Oncogene, vol. 27, no. 8, pp. 1183–1188, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. C. Gaiddon, M. Lokshin, I. Gross, D. Levasseur, Y. Taya, J.-P. Loeffler, and C. Prives, “Cyclin-dependent kinases phosphorylate p73 at Threonine 86 in a cell cycle-dependent manner and negatively regulate p73,” The Journal of Biological Chemistry, vol. 278, no. 30, pp. 27421–27431, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. T. Hanamoto, T. Ozaki, and T. Ozaki, “Identification of protein kinase A catalytic subunit β as a novel binding partner of p73 and regulation of p73 function,” The Journal of Biological Chemistry, vol. 280, no. 17, pp. 16665–16675, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. M. Ernst, D. P. Gearing, and A. R. Dunn, “Functional and biochemical association of Hck with the LIF/IL-6 receptor signal transducing subunit gp130 in embryonic stem cells,” EMBO Journal, vol. 13, no. 7, pp. 1574–1584, 1994. View at Google Scholar · View at Scopus
  87. N. Quintrell, R. Lebo, and R. Lebo, “Identification of a human gene (HCK) that encodes a protein-tyrosine kinase and is expressed in hemopoietic cells,” Molecular and Cellular Biology, vol. 7, no. 6, pp. 2267–2275, 1987. View at Google Scholar · View at Scopus
  88. S. F. Ziegler, J. D. Marth, D. B. Lewis, and R. M. Perlmutter, “Novel protein-tyrosine kinase gene (hck) preferentially expressed in cells of hematopoietic origin,” Molecular and Cellular Biology, vol. 7, no. 6, pp. 2276–2285, 1987. View at Google Scholar · View at Scopus
  89. K. Q. Tanis, D. Veach, H. S. Duewel, W. G. Bornmann, and A. J. Koleske, “Two distinct phosphorylation pathways have additive effects on Abl family kinase activation,” Molecular and Cellular Biology, vol. 23, no. 11, pp. 3884–3896, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. P. Paliwal, V. Radha, and G. Swarup, “Regulation of p73 by Hck through kinase-dependent and independent mechanisms,” BMC Molecular Biology, vol. 8, article 45, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. F. A. Barr, H. H.W. Silljé, and E. A. Nigg, “Polo-like kinases and the orchestration of cell division,” Nature Reviews Molecular Cell Biology, vol. 5, no. 6, pp. 429–440, 2004. View at Publisher · View at Google Scholar · View at PubMed
  92. S. Xie, B. Xie, M. Y. Lee, and W. Dai, “Regulation of cell cycle checkpoints by polo-like kinases,” Oncogene, vol. 24, no. 2, pp. 277–286, 2005. View at Publisher · View at Google Scholar · View at PubMed
  93. W. Dai, “Polo-like kinases, an introduction,” Oncogene, vol. 24, no. 2, pp. 214–216, 2005. View at Publisher · View at Google Scholar · View at PubMed
  94. K. Ando, T. Ozaki, and T. Ozaki, “Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation,” The Journal of Biological Chemistry, vol. 279, no. 24, pp. 25549–25561, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. S. Komatsu, H. Takenobu, and H. Takenobu, “Plk1 regulates liver tumor cell death by phosphorylation of TAp63,” Oncogene, vol. 28, no. 41, pp. 3631–3641, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. S. Xie, H. Wu, and H. Wu, “Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway,” The Journal of Biological Chemistry, vol. 276, no. 46, pp. 43305–43312, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. E. M. Bahassi, C. W. Conn, D. L. Myer, R. F. Hennigan, C. H. McGowan, Y. Sanchez, and P. J. Stambrook, “Mammalian Polo-like kinase 3 (Plk3) is a multifunctional protein involved in stress response pathways,” Oncogene, vol. 21, no. 43, pp. 6633–6640, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. M. Sang, K. Ando, and K. Ando, “Plk3 inhibits pro-apoptotic activity of p73 through physical interaction and phosphorylation,” Genes to Cells, vol. 14, no. 7, pp. 775–788, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. X. Zeng, X. Li, and X. Li, “The N-terminal domain of p73 interacts with the CH1 domain of p300/CREB binding protein and mediates transcriptional activation and apoptosis,” Molecular and Cellular Biology, vol. 20, no. 4, pp. 1299–1310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Costanzo, P. Merlo, and P. Merlo, “DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes,” Molecular Cell, vol. 9, no. 1, pp. 175–186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Strano, O. Monti, and O. Monti, “The transcriptional coactivator yes-associated protein drives p73 gene-target specificity in response to DNA damage,” Molecular Cell, vol. 18, no. 4, pp. 447–459, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. J. M. Dai, Z. Y. Wang, D. C. Sun, R. X. Lin, and S. Q. Wang, “SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity,” Journal of Cellular Physiology, vol. 210, no. 1, pp. 161–166, 2007. View at Publisher · View at Google Scholar · View at PubMed
  103. X. Zeng, H. Lee, Q. Zhang, and H. Lu, “p300 does not require its acetylase activity to stimulate p73 function,” The Journal of Biological Chemistry, vol. 276, no. 1, pp. 48–52, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. E.-J. Kim, J.-S. Park, and S.-J. Um, “Identification and characterization of HIPK2 interacting with p73 and modulating functions of the p53 family in vivo,” The Journal of Biological Chemistry, vol. 277, no. 35, pp. 32020–32028, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. G. D'Orazi, B. Cecchinelli, and B. Cecchinelli, “Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis,” Nature Cell Biology, vol. 4, no. 1, pp. 11–19, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. K.-C. Kim, T.-S. Kim, K.-H. Kang, and K.-H. Choi, “Amphiphysin IIb-1, a novel splicing variant of amphiphysin II, regulates p73β function through protein-protein interactions,” Oncogene, vol. 20, no. 46, pp. 6689–6699, 2001. View at Publisher · View at Google Scholar · View at PubMed
  107. M. H. Butler, C. David, and C. David, “Amphiphysin II (SH3p9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle,” Journal of Cell Biology, vol. 137, no. 6, pp. 1355–1367, 1997. View at Publisher · View at Google Scholar · View at Scopus
  108. K. Ried, M. Finnis, and M. Finnis, “Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells,” Human Molecular Genetics, vol. 9, no. 11, pp. 1651–1663, 2000. View at Google Scholar · View at Scopus
  109. A. K. Bednarek, C. L. Keck-Waggoner, and C. L. Keck-Waggoner, “WWOX, the FRA16D gene, behaves as a suppressor of tumor growth,” Cancer Research, vol. 61, no. 22, pp. 8068–8073, 2001. View at Google Scholar · View at Scopus
  110. M. Fabbri, D. Iliopoulos, and D. Iliopoulos, “WWOX gene restoration prevents lung cancer growth in vitro and in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 4041–4046, 2004. View at Google Scholar
  111. S. Strano, E. Munarriz, and E. Munarriz, “Physical Interaction with Yes-associated Protein Enhances p73 Transcriptional Activity,” The Journal of Biological Chemistry, vol. 276, no. 18, pp. 15164–15173, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. Y. Samuels-Lev, D. J. O'Connor, and D. J. O'Connor, “ASPP proteins specifically stimulate the apoptotic function of p53,” Molecular Cell, vol. 8, no. 4, pp. 781–794, 2001. View at Publisher · View at Google Scholar · View at Scopus
  113. D. Bergamaschi, Y. Samuels, B. Jin, S. Duraisingham, T. Crook, and X. Lu, “ASPP1 and ASPP2: common activators of p53 family members,” Molecular and Cellular Biology, vol. 24, no. 3, pp. 1341–1350, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. M.-H. Jeong, J. Bae, W.-H. Kim, S.-M. Yoo, J.-W. Kim, P. I. Song, and K.-H. Choi, “p19ras interacts with and activates p73 by involving the MDM2 protein,” The Journal of Biological Chemistry, vol. 281, no. 13, pp. 8707–8715, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. J. B. Cohen, S. D. Broz, and A. D. Levinson, “Expression of the H-ras proto-oncogene is controlled by alternative splicing,” Cell, vol. 58, no. 3, pp. 461–472, 1989. View at Google Scholar · View at Scopus
  116. K.-I. Watanabe, T. Ozaki, and T. Ozaki, “Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73 function,” The Journal of Biological Chemistry, vol. 277, no. 17, pp. 15113–15123, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. S. Kramer, T. Ozaki, K. Miyazaki, C. Kato, T. Hanamoto, and A. Nakagawara, “Protein stability and function of p73 are modulated by a physical interaction with RanBPM in mammalian cultured cells,” Oncogene, vol. 24, no. 5, pp. 938–944, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. K. Mori, Y. Maeda, H. Kitaura, T. Taira, S. M. M. Iguchi-Ariga, and H. Ariga, “MM-1, a novel c-Myc-associating protein that represses transcriptional activity of c-Myc,” The Journal of Biological Chemistry, vol. 273, no. 45, pp. 29794–29800, 1998. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Nakamura, H. Masuda, and H. Masuda, “When overexpressed, a novel centrosomal protein, RanBPM, causes ectopic microtubule nucleation similar to γ-tubulin,” Journal of Cell Biology, vol. 143, no. 4, pp. 1041–1052, 1998. View at Publisher · View at Google Scholar · View at Scopus
  120. H. Nishitani, E. Hirose, and E. Hirose, “Full-sized RanBPM cDNA encodes a protein possessing a long stretch of proline and glutamine within the N-terminal region, comprising a large protein complex,” Gene, vol. 272, no. 1-2, pp. 25–33, 2001. View at Publisher · View at Google Scholar · View at Scopus
  121. K. Pritchard-Jones, S. Fleming, and S. Fleming, “The candidate Wilms' tumour gene is involved in genitourinary development,” Nature, vol. 346, no. 6280, pp. 194–197, 1990. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  122. K. M. Call, T. Glaser, and T. Glaser, “Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus,” Cell, vol. 60, no. 3, pp. 509–520, 1990. View at Publisher · View at Google Scholar · View at Scopus
  123. A. L. Menke, A. J. Van Der Eb, and A. G. Jochemsen, “The Wilms' tumor 1 gene: oncogene or tumor suppressor gene?” International Review of Cytology, vol. 181, pp. 151–212, 1998. View at Google Scholar · View at Scopus
  124. V. Scharnhorst, P. Dekker, A. J. Van Der Eb, and A. G. Jochemsen, “Physical interaction between Wilms tumor 1 and p73 proteins modulates their functions,” The Journal of Biological Chemistry, vol. 275, no. 14, pp. 10202–10211, 2000. View at Publisher · View at Google Scholar
  125. R. Grassmann, S. Berchtold, and S. Berchtold, “Role of human T-cell leukemia virus type 1 X region proteins in immortalization of primary human lymphocytes in culture,” Journal of Virology, vol. 66, no. 7, pp. 4570–4575, 1992. View at Google Scholar · View at Scopus
  126. M. R. Smith and W. C. Greene, “Type I human T cell leukemia virus tax protein transforms rat fibroblasts through the cyclic adenosine monophosphate response element binding protein/activating transcription factor pathway,” Journal of Clinical Investigation, vol. 88, no. 3, pp. 1038–1042, 1991. View at Google Scholar
  127. W. J. Grossman, J. T. Kimata, F.-H. Wong, M. Zutter, T. J. Ley, and L. Ratner, “Development of leukemia in mice transgenic for the tax gene of human T- cell leukemia virus type I,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 4, pp. 1057–1061, 1995. View at Publisher · View at Google Scholar · View at Scopus
  128. I. Lemasson and J. K. Nyborg, “Human T-cell leukemia virus type I tax repression of p73beta is mediated through competition for the C/H1 domain of CBP,” The Journal of Biological Chemistry, vol. 276, no. 19, pp. 15720–15727, 2001. View at Publisher · View at Google Scholar · View at PubMed
  129. K. Van Orden, H. A. Giebler, I. Lemasson, M. Gonzales, and J. K. Nyborg, “Binding of p53 to the KIX domain of CREB binding protein. A potential link to human T-cell leukemia virus, type I-associated leukemogenesis,” The Journal of Biological Chemistry, vol. 274, no. 37, pp. 26321–26328, 1999. View at Publisher · View at Google Scholar · View at Scopus
  130. R. B. Ray, K. Meyer, and R. Ray, “Suppression of apoptotic cell death by hepatitis C virus core protein,” Virology, vol. 226, no. 2, pp. 176–182, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. M. Otsuka, N. Kato, and N. Kato, “Hepatitis C virus core protein enhances p53 function through augmentation of DNA binding affinity and transcriptional ability,” The Journal of Biological Chemistry, vol. 275, no. 44, pp. 34122–34130, 2000. View at Google Scholar
  132. A. Alisi, S. Giambartolomei, F. Cupelli, P. Merlo, G. Fontemaggi, A. Spaziani, and C. Balsano, “Physical and functional interaction between HCV core protein and the different p73 isoforms,” Oncogene, vol. 22, no. 17, pp. 2573–2580, 2003. View at Publisher · View at Google Scholar · View at PubMed
  133. J. Roth, C. König, S. Wienzek, S. Weigel, S. Ristea, and M. Dobbelstein, “Inactivation of p53 but not p73 by adenovirus type 5 E1B 55-kilodalton and E4 34-kilodalton oncoproteins,” Journal of Virology, vol. 72, no. 11, pp. 8510–8516, 1998. View at Google Scholar · View at Scopus
  134. M. C. Marin, C. A. Jost, M. S. Irwin, J. A. DeCaprio, D. Caput, and W. G. Kaelin Jr., “Viral oncoproteins discriminate between p53 and the p53 homolog p73,” Molecular and Cellular Biology, vol. 18, no. 11, pp. 6316–6324, 1998. View at Google Scholar · View at Scopus
  135. T. Dobner, N. Horikoshi, S. Rubenwolf, and T. Shenk, “Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor,” Science, vol. 272, no. 5267, pp. 1470–1473, 1996. View at Google Scholar · View at Scopus
  136. F. Higashino, J. M. Pipas, and T. Shenk, “Adenovirus E4orf6 oncoprotein modulates the function of the p53-related protein, p73,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 26, pp. 15683–15687, 1998. View at Publisher · View at Google Scholar
  137. G. Nagatani, M. Nomoto, and M. Nomoto, “Transcriptional activation of the human HMG1 gene in cisplatin-resistant human cancer cells,” Cancer Research, vol. 61, no. 4, pp. 1592–1597, 2001. View at Google Scholar · View at Scopus
  138. H. Uramoto, H. Izumi, and H. Izumi, “Physical interaction of tumour suppressor p53/p73 with CCAAT-binding transcription factor 2 (CTF2) and differential regulation of human high-mobility group 1 (HMG1) gene expression,” Biochemical Journal, vol. 371, no. 2, pp. 301–310, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  139. S. Alberti, C. Esser, and J. Höhfeld, “BAG-1—a nucleotide exchange factor of Hsc70 with multiple cellular functions,” Cell Stress and Chaperones, vol. 8, no. 3, pp. 225–231, 2003. View at Google Scholar · View at Scopus
  140. P. A. Townsend, R. I. Cutress, A. Sharp, M. Brimmell, and G. Packham, “BAG-1: a multifunctional regulator of cell growth and survival,” Biochimica et Biophysica Acta, vol. 1603, no. 2, pp. 83–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  141. P. A. Townsend, A. Stephanou, G. Packham, and D. S. Latchman, “BAG-1: a multi-functional pro-survival molecule,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 2, pp. 251–259, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. S.-C. Tang, N. Shaheta, G. Chernenko, M. Khalifa, and X. Wang, “Expression of BAG-1 in invasive breast carcinomas,” Journal of Clinical Oncology, vol. 17, no. 6, pp. 1710–1719, 1999. View at Google Scholar · View at Scopus
  143. X.-H. Wang, D. O'Connor, M. Brimmell, and G. Packham, “The BAG-1 cochaperone is a negative regulator of p73-dependent transcription,” British Journal of Cancer, vol. 100, no. 8, pp. 1347–1357, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. X.-J. Yang, “The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases,” Nucleic Acids Research, vol. 32, no. 3, pp. 959–976, 2004. View at Publisher · View at Google Scholar · View at PubMed
  145. G. Legube, L. K. Linares, S. Tyteca, C. Caron, M. Scheffner, M. Chevillard-Briet, and D. Trouche, “Role of the histone acetyl transferase Tip60 in the p53 pathway,” The Journal of Biological Chemistry, vol. 279, no. 43, pp. 44825–44833, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  146. S. M. Sykes, H. S. Mellert, M. A. Holbert, K. Li, R. Marmorstein, W. S. Lane, and S. B. McMahon, “Acetylation of the p53 DNA-binding domain regulates apoptosis induction,” Molecular Cell, vol. 24, no. 6, pp. 841–851, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  147. Y. Tang, J. Luo, W. Zhang, and W. Gu, “Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis,” Molecular Cell, vol. 24, no. 6, pp. 827–839, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  148. J.-W. Kim, P. I. Song, and P. I. Song, “TIP60 represses transcriptional activity of p73β via an MDM2-bridged ternary complex,” The Journal of Biological Chemistry, vol. 283, no. 29, pp. 20077–20086, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  149. G. Blandino, A. J. Levine, and M. Oren, “Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy,” Oncogene, vol. 18, no. 2, pp. 477–485, 1999. View at Publisher · View at Google Scholar · View at Scopus
  150. S. Strano, E. Munarriz, and E. Munarriz, “Physical and functional interaction between p53 mutants and different isoforms of p73,” The Journal of Biological Chemistry, vol. 275, no. 38, pp. 29503–29512, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  151. M. Sang, Y. Li, and Y. Li, “p73-dependent induction of 14-3-3σ increases the chemo-sensitivity of drug-resistant human breast cancers,” Biochemical and Biophysical Research Communications, vol. 347, no. 1, pp. 327–333, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus