Table of Contents
International Journal of Proteomics
Volume 2011 (2011), Article ID 413742, 9 pages
http://dx.doi.org/10.1155/2011/413742
Research Article

Clinical Utility of Serum Autoantibodies Detected by Protein Microarray in Melanoma

Department of Surgery, University of Michigan Health Systems Biostatistics Core, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109, USA

Received 12 July 2011; Accepted 11 August 2011

Academic Editor: David E. Misek

Copyright © 2011 Michael S. Sabel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Neagu, C. Constantin, and C. Tanase, “Immune-related biomarkers for diagnosis/prognosis and therapy monitoring of cutaneous melanoma,” Expert review of molecular diagnostics, vol. 10, no. 7, pp. 897–919, 2010. View at Google Scholar
  2. A. Wankowicz-Kalinska, C. Le Poole, R. Van Den Wijngaard, W. J. Storkus, and P. K. Das, “Melanocyte-specific immune response in melanoma and vitiligo: two faces of the same coin?” Pigment Cell Research, vol. 16, no. 3, pp. 254–260, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Uchi, R. Stan, M. J. Turk et al., “Unraveling the complex relationship between cancer immunity and autoimmunity: lessons from melanoma and vitiligo,” Advances in Immunology, vol. 90, pp. 215–241, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Ramirez-Montagut, M. J. Turk, J. D. Wolchok, J. A. Guevara-Patino, and A. N. Houghton, “Immunity to melanoma: unraveling the relation of tumor immunity and autoimmunity,” Oncogene, vol. 22, no. 20, pp. 3180–3187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. P. M. Rudd, T. Elliott, P. Cresswell, I. A. Wilson, and R. A. Dwek, “Glycosylation and the immune system,” Science, vol. 291, no. 5512, pp. 2370–2376, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. P. M. Rudd, M. R. Wormald, R. L. Stanfield et al., “Roles for glycosylation of cell surface receptors involved in cellular immune recognition,” Journal of Molecular Biology, vol. 293, no. 2, pp. 351–366, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. H. A. Chapman, “Endosomal proteolysis and MHC class II function,” Current Opinion in Immunology, vol. 10, no. 1, pp. 93–102, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Liu, J. He, X. Xie et al., “Serum autoantibody profiling using a natural glycoprotein microarray for the prognosis of early melanoma,” Journal of Proteome Research, vol. 9, no. 11, pp. 6044–6051, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. M. Balch, J. E. Gershenwald, S. J. Soong et al., “Final version of 2009 AJCC melanoma staging and classification,” Journal of Clinical Oncology, vol. 27, no. 36, pp. 6199–6206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Y. Bedikian, M. M. Johnson, C. L. Warneke et al., “Prognostic factors that determine the long-term survival of patients with unresectable metastatic melanoma,” Cancer Investigation, vol. 26, no. 6, pp. 624–633, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. U. Keilholz, P. Martus, C. J. A. Punt et al., “Prognostic factors for survival and factors associated with long-term remission in patients with advanced melanoma receiving cytokine-based treatments: second analysis of a randomised EORTC Melanoma Group trial comparing interferon-α2a (IFNα) and interleukin 2 (IL-2) with or without cisplatin,” European Journal of Cancer, vol. 38, no. 11, pp. 1501–1511, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Manola, M. Atkins, J. Ibrahim, and J. Kirkwood, “Prognostic factors in metastatic melanoma: a pooled analysis of Eastern Cooperative Oncology Group trials,” Journal of Clinical Oncology, vol. 18, no. 22, pp. 3782–3793, 2000. View at Google Scholar · View at Scopus
  13. A. Barth, L. A. Wanek, and D. L. Morton, “Prognostic factors in 1,521 melanoma patients with distant metastases,” Journal of the American College of Surgeons, vol. 181, no. 3, pp. 193–201, 1995. View at Google Scholar · View at Scopus
  14. F. Egberts, W. N. Hitschler, M. Weichenthal, and A. Hauschild, “Prospective monitoring of adjuvant treatment in high-risk melanoma patients: lactate dehydrogenase and protein S-100B as indicators of relapse,” Melanoma Research, vol. 19, no. 1, pp. 31–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. T. M. Johnson, C. R. Bradford, S. B. Gruber, V. K. Sondak, and J. L. Schwartz, “Staging workup, sentinel node biopsy, and follow-up tests for melanoma: update of current concepts,” Archives of Dermatology, vol. 140, no. 1, pp. 107–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Lugovic, M. Situm, M. Buljan et al., “Results of the determination of serum markers in patietns wtih malignant melanoma,” Collegium Antropologicum, vol. 31, supplement 1, pp. 7–11, 2007. View at Google Scholar
  17. G. Leto, F. M. Tumminello, M. Crescimanno, C. Flandina, and N. Gebbia, “Cathepsin D expression levels in nongynecological solid tumors: clinical and therapeutic implications,” Clinical and Experimental Metastasis, vol. 21, no. 2, pp. 91–106, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Rochefort and E. Liaudet-Coopman, “Cathepsin D in cancer metastasis: a protease and a ligand,” Acta Pathologica, Microbiologica. et Immunologica Scandinavica, vol. 107, no. 1, pp. 86–95, 1999. View at Google Scholar · View at Scopus
  19. E. Frohlich, B. Schalagenhauff, M. Mohrle et al., “Activity, expression, and transcription rate of the cathepsins B, D, H, and L in cutaneous malignant melanoma,” Cancer, vol. 91, no. 5, pp. 972–982, 2001. View at Google Scholar
  20. I. Bartenjev, Z. Rudolf, B. Štabuc, I. Vrhovec, T. Perkovič, and A. Kansky, “Cathepsin D expression in early cutaneous malignant melanoma,” International Journal of Dermatology, vol. 39, no. 8, pp. 599–602, 2000. View at Publisher · View at Google Scholar
  21. F. J. Otto, T. Goldmann, B. Biess, A. Lippold, L. Suter, and U. Westhoff, “Prognostic classification of malignant melanomas by combining clinical, histological, and immunohistochemical parameters,” Oncology, vol. 56, no. 3, pp. 208–214, 1999. View at Google Scholar · View at Scopus
  22. T. Goldmann, L. Suter, D. Ribbert, and F. Otto, “The expression of proteolytic enzymes at the dermal invading front of primary cutaneous melanoma predicts metastasis,” Pathology Research and Practice, vol. 195, no. 3, pp. 171–175, 1999. View at Google Scholar
  23. T. Kageshita, A. Yoshii, T. Kimura et al., “Biochemical and immunohistochemical analysis of cathepsins B, H, L and D in human melanocytic tumours,” Archives of Dermatological Research, vol. 287, no. 3-4, pp. 266–272, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. O. L. Podhajcer, L. Bover, A. I. Bravo et al., “Expression of cathepsin D in primary and metastatic human melanoma and dysplastic nevi,” Journal of Investigative Dermatology, vol. 104, no. 3, pp. 340–344, 1995. View at Google Scholar
  25. U. Westhoff, C. Fox, and F. J. Otto, “Quantification of cathepsin D in plasma of patients with malignant melanoma,” Anticancer Research, vol. 18, no. 5 B, pp. 3785–3788, 1998. View at Google Scholar · View at Scopus
  26. A. E. M. Mahdy, J. C. Cheng, J. Li et al., “Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer,” Molecular Therapy, vol. 17, no. 3, pp. 430–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Liu, J. C. Cheng, L. S. Turner et al., “Acid ceramidase upregulation in prostate cancer: role in tumor development and implications for therapy,” Expert Opinion on Therapeutic Targets, vol. 13, no. 12, pp. 1449–1458, 2009. View at Google Scholar · View at Scopus
  28. E. Ruckhberle, U. Holtrich, K. Engels et al., “Acid ceramidase 1 expression correlates with a better prognosis in ER-positive breast cancer,” Climacteric, vol. 12, no. 6, pp. 502–513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Maeda, T. Takano, F. Matsuzuka et al., “Rapid screening of specific changes in mRNA in thyroid carcinomas by sequence specific-differential display: decreased expression of acid ceramidase mRNA in malignant and benign thyroid tumors,” International Journal of Cancer, vol. 81, no. 5, pp. 700–704, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Haimovitz-Friedman, C. C. Kan, D. Ehleiter et al., “Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis,” Journal of Experimental Medicine, vol. 180, no. 2, pp. 525–535, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. S. J. Chmura, E. Nodzenski, M. A. Beckett, D. W. Kufe, J. Quintans, and R. R. Weichselbaum, “Loss of ceramide production confers resistance to radiation-induced apoptosis,” Cancer Research, vol. 57, no. 7, pp. 1270–1275, 1997. View at Google Scholar · View at Scopus
  32. R. Kolesnick, “The therapeutic potential of modulating the ceramide/sphingomyelin pathway,” Journal of Clinical Investigation, vol. 110, no. 1, pp. 3–8, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Huwiler and J. Pfeilschifter, “Altering the sphingosine-1-phosphate/ceramide balance: a promising approach for tumor therapy,” Current Pharmaceutical Design, vol. 12, no. 35, pp. 4625–4635, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. H. Zeidan, R. W. Jenkins, J. B. Korman et al., “Molecular targeting of acid ceramidase: implications to cancer therapy,” Current Drug Targets, vol. 9, no. 8, pp. 653–661, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. M. McCarthy, E. Pick, Y. Kluger et al., “HSP90 as a marker of progression in melanoma,” Annals of Oncology, vol. 19, no. 3, pp. 590–594, 2008. View at Publisher · View at Google Scholar · View at Scopus