Table of Contents
International Journal of Proteomics
Volume 2011, Article ID 739615, 11 pages
http://dx.doi.org/10.1155/2011/739615
Research Article

Combined Use of a Solid-Phase Hexapeptide Ligand Library with Liquid Chromatography and Two-Dimensional Difference Gel Electrophoresis for Intact Plasma Proteomics

1Division of Pharmacoproteomics, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
2Laboratory of Genome Biology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 278-8510, Japan
3Laboratory of Proteome Research, National Institute of Biomedical Innovation, Osaka 567-0085, Japan

Received 2 May 2011; Accepted 9 June 2011

Academic Editor: David E. Misek

Copyright © 2011 Tatsuo Hagiwara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Hanash, S. J. Pitteri, and V. M. Faca, “Mining the plasma proteome for cancer biomarkers,” Nature, vol. 452, no. 7187, pp. 571–579, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Zhang and D. W. Chan, “The road from discovery to clinical diagnostics: lessons learned from the first FDA-cleared in vitro diagnostic multivariate index assay of proteomic biomarkers,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 12, pp. 2995–2999, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Zhang, A. Y. Liu, P. Loriaux et al., “Mass spectrometric detection of tissue proteins in plasma,” Molecular and Cellular Proteomics, vol. 6, no. 1, pp. 64–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Zhang, V. Faca, and S. Hanash, “Mining the plasma proteome for disease applications across seven logs of protein abundance,” Journal of Proteome Research, vol. 10, no. 1, pp. 46–50, 2011. View at Publisher · View at Google Scholar
  5. P. G. Righetti, E. Boschetti, L. Lomas, and A. Citterio, “Protein equalizer technology : the quest for a “democratic proteome”,” Proteomics, vol. 6, no. 14, pp. 3980–3992, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Thulasiraman, S. Lin, L. Gheorghiu et al., “Reduction of the concentration difference of proteins in biological liquids using a library of combinatorial ligands,” Electrophoresis, vol. 26, no. 18, pp. 3561–3571, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. P. G. Righetti, A. Castagna, P. Antonioli, and E. Boschetti, “Prefractionation techniques in proteome analysis: the mining tools of the third millennium,” Electrophoresis, vol. 26, no. 2, pp. 297–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. P. G. Righetti, A. Castagna, F. Antonucci et al., “Proteome analysis in the clinical chemistry laboratory: myth or reality?” Clinica Chimica Acta, vol. 357, no. 2, pp. 123–139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. P. G. Righetti, E. Boschetti, A. Zanella, E. Fasoli, and A. Citterio, “Plucking, pillaging and plundering proteomes with combinatorial peptide ligand libraries,” Journal of Chromatography A, vol. 1217, no. 6, pp. 893–900, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Sennels, M. Salek, L. Lomas, E. Boschetti, P. G. Righetti, and J. Rappsilber, “Proteomic analysis of human blood serum using peptide library beads,” Journal of Proteome Research, vol. 6, no. 10, pp. 4055–4062, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. E. Bandow, “Comparison of protein enrichment strategies for proteome analysis of plasma,” Proteomics, vol. 10, no. 7, pp. 1416–1425, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Sihlbom, I. Kanmert, H. Von Bahr, and P. Davidsson, “Evaluation of the combination of bead technology with SELDI-TOF-MS and 2-D DIGE for detection of plasma proteins,” Journal of Proteome Research, vol. 7, no. 9, pp. 4191–4198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Ernoult, A. Bourreau, E. Gamelin, and C. Guette, “A proteomic approach for plasma biomarker discovery with iTRAQ labelling and OFFGEL fractionation,” Journal of Biomedicine & Biotechnology, vol. 2010, Article ID 927917, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. S. K. Au, W. C. S. Cho, T. T. Yip et al., “Deep proteome profiling of sera from never-smoked lung cancer patients,” Biomedicine and Pharmacotherapy, vol. 61, no. 9, pp. 570–577, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Marrocco, S. Rinalducci, A. Mohamadkhani, G. M. D'Amici, and L. Zolla, “Plasma gelsolin protein: a candidate biomarker for hepatitis B-associated liver cirrhosis identified by proteomic approach,” Blood Transfusion, vol. 8, supplement 3, pp. s105–s112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Gatto, M. C. Bragazzi, R. Semeraro et al., “Cholangiocarcinoma: update and future perspectives,” Digestive and Liver Disease, vol. 42, no. 4, pp. 253–260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Kondo and S. Hirohashi, “Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics,” Nature Protocols, vol. 1, no. 6, pp. 2940–2956, 2007. View at Google Scholar · View at Scopus
  18. T. Okano, T. Kondo, T. Kakisaka et al., “Plasma proteomics of lung cancer by a linkage of multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis,” Proteomics, vol. 6, no. 13, pp. 3938–3948, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Kakisaka, T. Kondo, T. Okano et al., “Plasma proteomics of pancreatic cancer patients by multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis (2D-DIGE): Up-regulation of leucine-rich alpha-2-glycoprotein in pancreatic cancer,” Journal of Chromatography B, vol. 852, no. 1-2, pp. 257–267, 2007. View at Publisher · View at Google Scholar
  20. N. Zolotarjova, J. Martosella, G. Nicol, J. Bailey, B. E. Boyes, and W. C. Barrett, “Differences among techniques for high-abundant protein depletion,” Proteomics, vol. 5, no. 13, pp. 3304–3313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. R. C. Dwivedi, O. V. Krokhin, J. P. Cortens, and J. A. Wilkins, “Assessment of the reproducibility of random hexapeptide peptide library-based protein normalization,” Journal of Proteome Research, vol. 9, no. 2, pp. 1144–1149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Mouton-Barbosa, F. Roux-Dalvai, D. Bouyssié et al., “In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification,” Molecular and Cellular Proteomics, vol. 9, no. 5, pp. 1006–1021, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. O. Beseme, M. Fertin, H. Drobecq, P. Amouyel, and F. Pinet, “Combinatorial peptide ligand library plasma treatment: advantages for accessing low-abundance proteins,” Electrophoresis, vol. 31, no. 16, pp. 2697–2704, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. P. E. Scherer, S. Williams, M. Fogliano, G. Baldini, and H. F. Lodish, “A novel serum protein similar to C1q, produced exclusively in adipocytes,” Journal of Biological Chemistry, vol. 270, no. 45, pp. 26746–26749, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Hu, P. Liang, and B. M. Spiegelman, “AdipoQ is a novel adipose-specific gene dysregulated in obesity,” Journal of Biological Chemistry, vol. 271, no. 18, pp. 10697–10703, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Maeda, K. Okubo, I. Shimomura, T. Funahashi, Y. Matsuzawa, and K. Matsubara, “cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant gene transcript 1),” Biochemical and Biophysical Research Communications, vol. 221, no. 2, pp. 286–289, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Nakano, T. Tobe, N. H. Choi-Miura, T. Mazda, and M. Tomita, “Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma,” Journal of Biochemistry, vol. 120, no. 4, pp. 803–812, 1996. View at Google Scholar · View at Scopus
  28. Y. Matsuzawa, T. Funahashi, S. Kihara, and I. Shimomura, “Adiponectin and metabolic syndrome,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 1, pp. 29–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Spranger, A. Kroke, M. Möhlig et al., “Adiponectin and protection against type 2 diabetes mellitus,” The Lancet, vol. 361, no. 9353, pp. 226–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. D. M. Maahs, L. G. Ogden, G. L. Kinney et al., “Low plasma adiponectin levels predict progression of coronary artery calcification,” Circulation, vol. 111, no. 6, pp. 747–753, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J. Thun, “Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. Adults,” New England Journal of Medicine, vol. 348, no. 17, pp. 1625–1638, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Arano, H. Nakagawa, R. Tateishi et al., “Serum level of adiponectin and the risk of liver cancer development in chronic hepatitis C patients,” International Journal of Cancer, vol. 129, no. 9, pp. 2226–2235, 2011. View at Publisher · View at Google Scholar
  33. C. Duggan, M. L. Irwin, L. Xiao et al., “Associations of insulin resistance and adiponectin with mortality in women with breast cancer,” Journal of Clinical Oncology, vol. 29, no. 1, pp. 32–39, 2011. View at Publisher · View at Google Scholar
  34. T. Krechler, M. Zeman, M. Vecka et al., “Leptin and adiponectin in pancreatic cancer: connection with diabetes mellitus,” Neoplasma, vol. 58, pp. 58–64, 2011. View at Google Scholar
  35. P. T. Soliman, X. Cui, Q. Zhang, S. E. Hankinson, and K. H. Lu, “Circulating adiponectin levels and risk of endometrial cancer: the prospective nurses' health study,” American Journal of Obstetrics and Gynecology, vol. 204, no. 2, pp. 167.e1–167.e5, 2011. View at Publisher · View at Google Scholar
  36. T. Yamaji, M. Iwasaki, S. Sasazuki, and S. Tsugane, “Interaction between adiponectin and leptin influences the risk of colorectal adenoma,” Cancer Research, vol. 70, no. 13, pp. 5430–5437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Ferroni, R. Palmirotta, A. Spila et al., “Prognostic significance of adiponectin levels in non-metastatic colorectal cancer,” Anticancer Research, vol. 27, no. 1 B, pp. 483–489, 2007. View at Google Scholar · View at Scopus
  38. G. Li, L. Cong, J. Gasser, J. Zhao, K. Chen, and F. Li, “Mechanisms underlying the anti-proliferative actions of adiponectin in human breast cancer cells, MCF7-dependency on the cAMP/protein Kinase-A pathway,” Nutrition and Cancer, vol. 63, no. 1, pp. 80–88, 2011. View at Publisher · View at Google Scholar
  39. R. A. Skidgel, G. B. McGwire, and X. Y. Lix, “Membrane anchoring and release of carboxypeptidase M: implications for extracellular hydrolysis of peptide hormones,” Immunopharmacology, vol. 32, no. 1-3, pp. 48–52, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. D. A. Davis, K. E. Singer, M. De La Luz Sierra et al., “Identification of carboxypeptidase N as an enzyme responsible for C-terminal cleavage of stromal cell-derived factor-1α in the circulation,” Blood, vol. 105, no. 12, pp. 4561–4568, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Candiano, V. Dimuccio, M. Bruschi et al., “Combinatorial peptide ligand libraries for urine proteome analysis: investigation of different elution systems,” Electrophoresis, vol. 30, no. 14, pp. 2405–2411, 2009. View at Publisher · View at Google Scholar · View at Scopus