Table of Contents
International Journal of Proteomics
Volume 2011 (2011), Article ID 896476, 16 pages
http://dx.doi.org/10.1155/2011/896476
Research Article

Proteomic-Based Biosignatures in Breast Cancer Classification and Prediction of Therapeutic Response

1Gonda/UCLA Breast Cancer Research Laboratory, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
2Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
3Cardiovascular Proteomics Center, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
4Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
5Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
6Pasarow Mass Spectrometry Laboratory, Semel Institute and Department of Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
7Revlon/UCLA Breast Center, David Geffen School of Medicine at UCLA, 200 UCLA Medical Plaza, B265, Los Angeles, CA 90095, USA

Received 22 June 2011; Accepted 12 August 2011

Academic Editor: David E. Misek

Copyright © 2011 Jianbo He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Protein-based markers that classify tumor subtypes and predict therapeutic response would be clinically useful in guiding patient treatment. We investigated the LC-MS/MS-identified protein biosignatures in 39 baseline breast cancer specimens including 28 HER2-positive and 11 triple-negative (TNBC) tumors. Twenty proteins were found to correctly classify all HER2 positive and 7 of the 11 TNBC tumors. Among them, galectin-3-binding protein and ALDH1A1 were found preferentially elevated in TNBC, whereas CK19, transferrin, transketolase, and thymosin 𝛽 4 and 𝛽 10 were elevated in HER2-positive cancers. In addition, several proteins such as enolase, vimentin, peroxiredoxin 5, Hsp 70, periostin precursor, RhoA, cathepsin D preproprotein, and annexin 1 were found to be associated with the tumor responses to treatment within each subtype. The MS-based proteomic findings appear promising in guiding tumor classification and predicting response. When sufficiently validated, some of these candidate protein markers could have great potential in improving breast cancer treatment.