Table of Contents
International Journal of Proteomics
Volume 2011, Article ID 896476, 16 pages
http://dx.doi.org/10.1155/2011/896476
Research Article

Proteomic-Based Biosignatures in Breast Cancer Classification and Prediction of Therapeutic Response

1Gonda/UCLA Breast Cancer Research Laboratory, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
2Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
3Cardiovascular Proteomics Center, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
4Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
5Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
6Pasarow Mass Spectrometry Laboratory, Semel Institute and Department of Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
7Revlon/UCLA Breast Center, David Geffen School of Medicine at UCLA, 200 UCLA Medical Plaza, B265, Los Angeles, CA 90095, USA

Received 22 June 2011; Accepted 12 August 2011

Academic Editor: David E. Misek

Copyright © 2011 Jianbo He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. Carlson, E. Brown, H. J. Burstein et al., “NCCN task force report: adjuvant therapy for breast cancer,” Journal of the National Comprehensive Cancer Network, vol. 4, supplement 1, pp. S1–S26, 2006. View at Google Scholar · View at Scopus
  2. J. Baselga, L. Gianni, C. Geyer, E. A. Perez, A. Riva, and C. Jackisch, “Future options with trastuzumab for primary systemic and adjuvant therapy,” Seminars in Oncology, vol. 31, no. 5, supplement 10, pp. 51–57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. S. Ross, D. P. Schenkein, R. Pietrusko et al., “Targeted therapies for cancer 2004,” American Journal of Clinical Pathology, vol. 122, no. 4, pp. 598–609, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. P. C. Fong, D. S. Boss, T. A. Yap et al., “Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers,” The New England Journal of Medicine, vol. 361, no. 2, pp. 123–134, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. C. K. Anders, E. P. Winer, J. M. Ford et al., “Poly(ADP-ribose) polymerase inhibition: “targeted” therapy for triple-negative breast cancer,” Clinical Cancer Research, vol. 16, no. 19, pp. 4702–4710, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. R. Radpour, Z. Barekati, C. Kohler, W. Holzgreve, and X. Y. Zhong, “New trends in molecular biomarker discovery for breast cancer,” Genetic Testing and Molecular Biomarkers, vol. 13, no. 5, pp. 565–571, 2009. View at Google Scholar · View at Scopus
  7. J. S. Reis-Filho and A. N. J. Tutt, “Triple negative tumours: a critical review,” Histopathology, vol. 52, no. 1, pp. 108–118, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. C. M. Perou, T. Sørile, M. B. Eisen et al., “Molecular portraits of human breast tumours,” Nature, vol. 406, no. 6797, pp. 747–752, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. T. Sørlie, C. M. Perou, R. Tibshirani et al., “Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10869–10874, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. T. Sørlie, R. Tibshirani, J. Parker et al., “Repeated observation of breast tumor subtypes in independent gene expression data sets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8418–8423, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. H. R. Chang, “Trastuzumab-based neoadjuvant therapy in patients with HER2-positive breast cancer,” Cancer, vol. 116, no. 12, pp. 2856–2867, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. V. Kulasingam and E. P. Diamandis, “Strategies for discovering novel cancer biomarkers through utilization of emerging technologies,” Nature Clinical Practice Oncology, vol. 5, no. 10, pp. 588–599, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. N. L. Anderson and N. G. Anderson, “The human plasma proteome: history, character, and diagnostic prospects,” Molecular & Cellular Proteomics, vol. 1, no. 11, pp. 845–867, 2002. View at Google Scholar · View at Scopus
  14. H. Hondermarck, C. Tastet, I. E. Yazidi-Belkoura, R. A. Toillon, and X. L. Bourhis, “Proteomics of breast cancer: the quest for markers and therapeutic targets,” Journal of Proteome Research, vol. 7, no. 4, pp. 1403–1411, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. C. Röwer, J. P. C. Vissers, C. Koy et al., “Towards a proteome signature for invasive ductal breast carcinoma derived from label-free nanoscale LC-MS protein expression profiling of tumorous and glandular tissue,” Analytical and Bioanalytical Chemistry, vol. 395, no. 8, pp. 2443–2456, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. He, D. Shen, D. U. Chung et al., “Tumor proteomic profiling predicts the susceptibility of breast cancer to chemotherapy,” International Journal of Oncology, vol. 35, no. 4, pp. 683–692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. H. R. Chang, J. Glaspy, M. A. Allison et al., “Differential response of triple-negative breast cancer to a docetaxel and carboplatin-based neoadjuvant treatment,” Cancer, vol. 116, no. 18, pp. 4227–4237, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. N. Rifai, M. A. Gillette, and S. A. Carr, “Protein biomarker discovery and validation: the long and uncertain path to clinical utility,” Nature Biotechnology, vol. 24, no. 8, pp. 971–983, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. S. A. Whelan, M. Lu, J. He et al., “Mass spectrometry (LC-MS/MS) site-mapping of N-glycosylated membrane proteins for breast cancer biomarkers,” Journal of Proteome Research, vol. 8, no. 8, pp. 4151–4160, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold, “Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search,” Analytical Chemistry, vol. 74, no. 20, pp. 5383–5392, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. I. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold, “A statistical model for identifying proteins by tandem mass spectrometry,” Analytical Chemistry, vol. 75, no. 17, pp. 4646–4658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. T. A. Ulmer, V. Keeler, L. Loh et al., “Tumor-associated antigen 90K/Mac-2-binding protein: possible role in colon cancer,” Journal of Cellular Biochemistry, vol. 98, no. 5, pp. 1351–1366, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. Y. P. Park, S. C. Choi, J. H. Kim et al., “Up-regulation of Mac-2 binding protein by hTERT in gastric cancer,” International Journal of Cancer, vol. 120, no. 4, pp. 813–820, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. F. Mbeunkui, B. J. Metge, L. A. Shevde, and L. K. Pannell, “Identification of differentially secreted biomarkers using LC-MS/MS in isogenic cell lines representing a progression of breast cancer,” Journal of Proteome Research, vol. 6, no. 8, pp. 2993–3002, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. Y. Wang, X. Ao, H. Vuong et al., “Membrane glycoproteins associated with breast tumor cell progression identified by a lectin affinity approach,” Journal of Proteome Research, vol. 7, no. 10, pp. 4313–4325, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. Q. Zhao, X. Guo, G. B. Nash et al., “Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface,” Cancer Research, vol. 69, no. 17, pp. 6799–6806, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. C. Ginestier, M. H. Hur, E. Charafe-Jauffret et al., “ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome,” Cell Stem Cell, vol. 1, no. 5, pp. 555–567, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. Lu, J. P. Whitelegge, S. A. Whelan et al., “Hydrophobic fractionation enhances novel protein detection by mass spectrometry in triple negative breast cancer,” Journal of Proteomics and Bioinformatics, vol. 3, no. 2, pp. 1–10, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. P. Sullivan, M. Spinola, M. Dodge et al., “Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling,” Cancer Research, vol. 70, no. 23, pp. 9937–9948, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. D. M. Schulz, C. Böllner, G. Thomas et al., “Identification of differentially expressed proteins in triple-negative breast carcinomas using DIGE and mass spectrometry,” Journal of Proteome Research, vol. 8, no. 7, pp. 3430–3438, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. M. Lu, S. A. Whelan, J. He et al., “Hydrophobic proteome analysis of triple negative and hormone-receptor- positive-her2-negative breast cancer by mass spectrometer,” Clinical Proteomics, vol. 6, no. 3, pp. 93–103, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. R. R. Parikh, Q. Yang, S. A. Higgins, and B. G. Haffty, “Outcomes in young women with breast cancer of triple-negative phenotype: the prognostic significance of CK19 expression,” International Journal of Radiation Oncology Biology Physics, vol. 70, no. 1, pp. 35–42, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. H. O. Habashy, D. G. Powe, C. M. Staka et al., “Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen,” Breast Cancer Research and Treatment, vol. 119, no. 2, pp. 283–293, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. C. Vyhlidal, X. Li, and S. Safe, “Estrogen regulation of transferrin gene expression in MCF-7 human breast cancer cells,” Journal of Molecular Endocrinology, vol. 29, no. 3, pp. 305–317, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Nakagawa, S. K. Huang, S. R. Martinez et al., “Proteomic profiling of primary breast cancer predicts axillary lymph node metastasis,” Cancer Research, vol. 66, no. 24, pp. 11825–11830, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. A. L. Goldstein, “Thymosin β4: a new molecular target for antitumor strategies,” Journal of the National Cancer Institute, vol. 95, no. 22, pp. 1646–1647, 2003. View at Google Scholar · View at Scopus
  37. H. J. Cha, M. J. Jeong, and H. K. Kleinman, “Role of thymosin β4 in tumor metastasis and angiogenesis,” Journal of the National Cancer Institute, vol. 95, no. 22, pp. 1674–1680, 2003. View at Google Scholar · View at Scopus
  38. S. M. J. Rahman, A. L. Gonzalez, M. Li et al., “Lung cancer diagnosis from proteomic analysis of preinvasive lesions,” Cancer Research, vol. 71, no. 8, pp. 3009–3017, 2011. View at Publisher · View at Google Scholar · View at PubMed
  39. B. J. Xu, A. L. Gonzalez, T. Kikuchi et al., “MALDI-MS derived prognostic protein markers for resected non-small cell lung cancer,” Proteomics—Clinical Applications, vol. 2, no. 10-11, pp. 1508–1517, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. C. W. Sutton, N. Rustogi, C. Gurkan et al., “Quantitative proteomic profiling of matched normal and tumor breast tissues,” Journal of Proteome Research, vol. 9, no. 8, pp. 3891–3902, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. S. Verghese-Nikolakaki, N. Apostolikas, E. Livaniou, D. S. Ithakissios, and G. P. Evangelatos, “Preliminary findings on the expression of thymosin beta-10 in human breast cancer,” British Journal of Cancer, vol. 74, no. 9, pp. 1441–1444, 1996. View at Google Scholar · View at Scopus
  42. A. Hennipman, B. A. van Oirschot, J. Smits, G. Rijksen, and G. E. J. Staal, “Glycolytic enzyme activities in breast cancer metastases,” Tumor Biology, vol. 9, no. 5, pp. 241–248, 1988. View at Google Scholar · View at Scopus
  43. M. I. Kokkinos, R. Wafai, M. K. Wong, D. F. Newgreen, E. W. Thompson, and M. Waltham, “Vimentin and epithelial-mesenchymal transition in human breast cancer—observations in vitro and in vivo,” Cells Tissues Organs, vol. 185, no. 1–3, pp. 191–203, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. J. C. Hendrix, E. A. Seftor, R. E. B. Seftor, and K. T. Trevor, “Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior,” American Journal of Pathology, vol. 150, no. 2, pp. 483–495, 1997. View at Google Scholar · View at Scopus
  45. E. Korsching, J. Packeisen, C. Liedtke et al., “The origin of vimentin expression in invasive breast cancer: epithelial- mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential?” Journal of Pathology, vol. 206, no. 4, pp. 451–457, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. C. S. Lin, Z. P. Chen, T. Park, K. Ghosh, and J. Leavitt, “Characterization of the human L-plastin gene promoter in normal and neoplastic cells,” Journal of Biological Chemistry, vol. 268, no. 4, pp. 2793–2801, 1993. View at Google Scholar · View at Scopus
  47. P. Karihtala, A. Mäntyniemi, S. W. Kang, V. L. Kinnula, and Y. Soini, “Peroxiredoxins in breast carcinoma,” Clinical Cancer Research, vol. 9, no. 9, pp. 3418–3424, 2003. View at Google Scholar · View at Scopus
  48. D. R. Ciocca and S. K. Calderwood, “Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications,” Cell Stress and Chaperones, vol. 10, no. 2, pp. 86–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Jäättelä, “Escaping cell death: survival proteins in cancer,” Experimental Cell Research, vol. 248, no. 1, pp. 30–43, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. D. D. Mosser, A. W. Caron, L. Bourget et al., “The chaperone function of hsp70 is required for protection against stress-induced apoptosis,” Molecular and Cellular Biology, vol. 20, no. 19, pp. 7146–7159, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Ruan, S. Bao, and G. Ouyang, “The multifaceted role of periostin in tumorigenesis,” Cellular and Molecular Life Sciences, vol. 66, no. 14, pp. 2219–2230, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. R. Shao, S. Bao, X. Bai et al., “Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression,” Molecular and Cellular Biology, vol. 24, no. 9, pp. 3992–4003, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Liang, J. Zhao, M. Hajivandi et al., “Quantification of membrane and membrane-bound proteins in normal and malignant breast cancer cells isolated from the same patient with primary breast carcinoma,” Journal of Proteome Research, vol. 5, no. 10, pp. 2632–2641, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. X. Liang, J. Huuskonen, M. Hajivandi et al., “Identification and quantification of proteins differentially secreted by a pair of normal and malignant breast-cancer cell lines,” Proteomics, vol. 9, no. 1, pp. 182–193, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. Y. Zhang, G. Zhang, J. Li, Q. Tao, and W. Tang, “The expression analysis of periostin in human breast cancer,” Journal of Surgical Research, vol. 160, no. 1, pp. 102–106, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. L. Gillan, D. Matei, D. A. Fishman, C. S. Gerbin, B. Y. Karlan, and D. D. Chang, “Periostin secreted by epithelial ovarian carcinoma is a ligand for αVβ3 and αVβ5 integrins and promotes cell motility,” Cancer Research, vol. 62, no. 18, pp. 5358–5364, 2002. View at Google Scholar · View at Scopus
  57. G. Fritz, C. Brachetti, F. Bahlmann, M. Schmidt, and B. Kaina, “Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters,” British Journal of Cancer, vol. 87, no. 6, pp. 635–644, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. K. Honda, T. Yamada, R. Endo et al., “Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion,” Journal of Cell Biology, vol. 140, no. 6, pp. 1383–1393, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Benes, V. Vetvicka, and M. Fusek, “Cathepsin D-many functions of one aspartic protease,” Critical Reviews in Oncology/Hematology, vol. 68, no. 1, pp. 12–28, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. S. M. Thorpe, H. Rochefort, M. Garcia et al., “Association between high concentrations of M(r) 52,000 cathepsin D and poor prognosis in primary human breast cancer,” Cancer Research, vol. 49, no. 21, pp. 6008–6014, 1989. View at Google Scholar · View at Scopus
  61. F. Spyratos, T. Maudelonde, J. P. Brouillet et al., “Cathepsin D: an independent prognostic factor for metastasis breast cancer,” The Lancet, vol. 2, no. 8672, pp. 1115–1118, 1989. View at Google Scholar · View at Scopus