Table of Contents
International Journal of Proteomics
Volume 2012 (2012), Article ID 104681, 5 pages
http://dx.doi.org/10.1155/2012/104681
Research Article

High Mass Accuracy Phosphopeptide Identification Using Tandem Mass Spectra

Sealy Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA

Received 27 April 2012; Accepted 18 June 2012

Academic Editor: Qiangwei Xia

Copyright © 2012 Rovshan G. Sadygov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Cohen, “The origins of protein phosphorylation,” Nature Cell Biology, vol. 4, no. 5, pp. E127–E130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Ubersax and J. E. Ferrell Jr., “Mechanisms of specificity in protein phosphorylation,” Nature Reviews Molecular Cell Biology, vol. 8, no. 7, pp. 530–541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, “The protein kinase complement of the human genome,” Science, vol. 298, no. 5600, pp. 1912–1934, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Cohen, “The regulation of protein function by multisite phosphorylation—a 25 year update,” Trends in Biochemical Sciences, vol. 25, no. 12, pp. 596–601, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. J. N. Andersen, S. Sathyanarayanan, A. Di Bacco et al., “Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors,” Science Translational Medicine, vol. 2, no. 43, Article ID 43ra55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Moritz, Y. Li, A. Guo et al., “Akt-RSK-S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases,” Science Signaling, vol. 3, no. 136, article ra64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Zhou, J. D. Watts, and R. Aebersold, “A systematic approach to the analysis of protein phosphorylation,” Nature Biotechnology, vol. 19, no. 4, pp. 375–378, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A. J. Link, J. Eng, D. M. Schieltz et al., “Direct analysis of protein complexes using mass spectrometry,” Nature Biotechnology, vol. 17, no. 7, pp. 676–682, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. E. L. Huttlin, M. P. Jedrychowski, J. E. Elias et al., “A tissue-specific atlas of mouse protein phosphorylation and expression,” Cell, vol. 143, no. 7, pp. 1174–1189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Zhai, S. A. Beausoleil, J. Mintseris, and S. P. Gygi, “Phosphoproteome analysis of Drosophila melanogaster embryos,” Journal of Proteome Research, vol. 7, no. 4, pp. 1675–1682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. J. Coon, B. Ueberheide, J. E. P. Syka et al., “Protein identification using sequential ion/ion reactions and tandem mass spectrometry,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 27, pp. 9463–9468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. P. Jedrychowski, E. L. Huttlin, W. Haas, M. E. Sowa, R. Rad, and S. P. Gygi, “Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics,” Molecular & Cellular Proteomics, vol. 10, no. 12, article M111, 2011. View at Google Scholar
  13. F. Wang, C. Song, K. Cheng, X. Jiang, M. Ye, and H. Zou, “Perspectives of comprehensive phosphoproteome analysis using shotgun strategy,” Analytical Chemistry, vol. 83, no. 21, pp. 8078–8085, 2011. View at Publisher · View at Google Scholar
  14. C. L. Nilsson, “Advances in quantitative phosphoproteomics,” Analytical Chemistry, vol. 84, no. 2, pp. 735–746, 2012. View at Publisher · View at Google Scholar
  15. B. E. Ruttenberg, T. Pisitkun, M. A. Knepper, and J. D. Hoffert, “PhosphoScore: an open-source phosphorylation site assignment Tool for MSn data,” Journal of Proteome Research, vol. 7, no. 7, pp. 3054–3059, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. K. Eng, A. L. McCormack, and J. R. Yates III, “An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database,” Journal of the American Society for Mass Spectrometry, vol. 5, no. 11, pp. 976–989, 1994. View at Google Scholar · View at Scopus
  17. S. A. Beausoleil, J. Villén, S. A. Gerber, J. Rush, and S. P. Gygi, “A probability-based approach for high-throughput protein phosphorylation analysis and site localization,” Nature Biotechnology, vol. 24, no. 10, pp. 1285–1292, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Taus, T. Kocher, P. Pichler et al., “Universal and confident phosphorylation site localization using phosphoRS,” Journal of Proteome Research, vol. 10, no. 12, pp. 5354–5362, 2011. View at Publisher · View at Google Scholar
  19. J. Cox, I. Matic, M. Hilger et al., “A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics,” Nature protocols, vol. 4, no. 5, pp. 698–705, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Lu, C. Ruse, T. Xu, S. K. Park, and J. Yates III, “Automatic validation of phosphopeptide identifications from tandem mass spectra,” Analytical Chemistry, vol. 79, no. 4, pp. 1301–1310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Lu, C. I. Ruse, and J. R. Yates III, “Colander: a probability-based support vector machine algorithm for automatic screening for CID spectra of phosphopeptides prior to database search,” Journal of Proteome Research, vol. 7, no. 8, pp. 3628–3634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Tsur, S. Tanner, E. Zandi, V. Bafna, and P. A. Pevzner, “Identification of post-translational modifications by blind search of mass spectra,” Nature Biotechnology, vol. 23, no. 12, pp. 1562–1567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Echols, P. Harrison, S. Balasubramanian et al., “Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes, comparing genes and pseudogenes,” Nucleic Acids Research, vol. 30, no. 11, pp. 2515–2523, 2002. View at Google Scholar · View at Scopus
  24. Q. Hu, R. J. Noll, H. Li, A. Makarov, M. Hardman, and R. G. Cooks, “The Orbitrap: a new mass spectrometer,” Journal of Mass Spectrometry, vol. 40, no. 4, pp. 430–443, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Lu, D. B. McClatchy, Y. K. Jin, and J. R. Yates III, “Strategies for shotgun identification of integral membrane proteins by tandem mass spectrometry,” Proteomics, vol. 8, no. 19, pp. 3947–3955, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. R. G. Sadygov, J. Shofstahl, and A. Humer, “Improvements to the database search algorithm SEQUEST for accurate mass support and improved phosphorylation searching,” in Proceedings of the Annual Conference on Mass Spectrometry and Allied Topics, 2005.
  27. B. Paizs and S. Suhai, “Fragmentation pathways of protonated peptides,” Mass Spectrometry Reviews, vol. 24, no. 4, pp. 508–548, 2005. View at Publisher · View at Google Scholar
  28. R. G. Sadygov, F. M. Maroto, and A. F. R. Hühmer, “ChromAlign: a two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces,” Analytical Chemistry, vol. 78, no. 24, pp. 8207–8217, 2006. View at Publisher · View at Google Scholar · View at Scopus