Table of Contents
International Journal of Proteomics
Volume 2012 (2012), Article ID 735132, 10 pages
http://dx.doi.org/10.1155/2012/735132
Research Article

An Economical High-Throughput Protocol for Multidimensional Fractionation of Proteins

School of Biomedical Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, UK

Received 17 February 2012; Revised 6 July 2012; Accepted 24 July 2012

Academic Editor: Paul P. Pevsner

Copyright © 2012 David John Tooth et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Cañas, C. Piñeiro, E. Calvo, D. López-Ferrer, and J. M. Gallardo, “Trends in sample preparation for classical and second generation proteomics,” Journal of Chromatography A, vol. 1153, no. 1-2, pp. 235–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Greenough, R. E. Jenkins, N. R. Kitteringham, M. Pirmohamed, B. K. Park, and S. R. Pennington, “A method for the rapid depletion of albumin and immunoglobulin from human plasma,” Proteomics, vol. 4, no. 10, pp. 3107–3111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Zolotarjova, P. Mrozinski, H. Chen, and J. Martosella, “Combination of affinity depletion of abundant proteins and reversed-phase fractionation in proteomic analysis of human plasma/serum,” Journal of Chromatography A, vol. 1189, no. 1-2, pp. 332–338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. K. S. Dhugga and P. M. Ray, “Isoelectric focusing of plant plasma membrane proteins: further evidence that a 55 kilodalton polypeptide is associated with β-1,3-glucan synthase activity from pea,” Plant Physiology, vol. 95, no. 4, pp. 1302–1305, 1991. View at Google Scholar · View at Scopus
  5. R. L. J. Graham, M. K. Sharma, N. G. Ternan, D. B. Weatherly, R. L. Tarleton, and G. McMullan, “A semi-quantitative GeLC-MS analysis of temporal proteome expression in the emerging nosocomial pathogen Ochrobactrum anthropi,” Genome Biology, vol. 8, no. 6, article R110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Zheng, K. A. Schneider, T. J. Barder, and D. M. Lubman, “Two-dimensional liquid chromatography protein expression mapping for differential proteomic analysis of normal and O157:H7 Escherichia coli,” BioTechniques, vol. 35, no. 6, pp. 1202–1212, 2003. View at Google Scholar · View at Scopus
  7. M. L. Ramsby, G. S. Makowski, and E. A. Khairallah, “Differential detergent fractionation of isolated hepatocytes: biochemical, immunochemical and two-dimensional gel electrophoresis characterization of cytoskeletal and noncytoskeletal compartments,” Electrophoresis, vol. 15, no. 2, pp. 265–277, 1994. View at Google Scholar · View at Scopus
  8. A. Abdolzade-Bavil, S. Hayes, L. Goretzki, M. Kröger, J. Anders, and R. Hendriks, “Convenient and versatile subcellular extraction procedure, that facilitates classical protein expression profiling and functional protein analysis,” Proteomics, vol. 4, no. 5, pp. 1397–1405, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. R. Himmelhoch, “Chromatography of proteins on ion-exchange adsorbents,” Methods in Enzymology, vol. 22, pp. 273–286, 1971. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Shi, R. Xiang, C. Horváth, and J. A. Wilkins, “The role of liquid chromatography in proteomics,” Journal of Chromatography A, vol. 1053, no. 1-2, pp. 27–36, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Neverova and J. E. Van Eyk, “Role of chromatographic techniques in proteomic analysis,” Journal of Chromatography B, vol. 815, no. 1-2, pp. 51–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Zhang, A. Fang, C. P. Riley, M. Wang, F. E. Regnier, and C. Buck, “Multi-dimensional liquid chromatography in proteomics-A review,” Analytica Chimica Acta, vol. 664, no. 2, pp. 101–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. W. H. Jin, J. Dai, S. J. Li, Q. C. Xia, H. F. Zou, and R. Zeng, “Human plasma proteome analysis by multidimensional chromatography prefractionation and linear ion trap mass spectrometry identification,” Journal of Proteome Research, vol. 4, no. 2, pp. 613–619, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. H. Deford, J. E. Nuss, J. Amaning, R. D. English, D. Tjernlund, and J. Papaconstantinou, “High-throughput liquid-liquid fractionation of multiple protein post-translational modifications,” Journal of Proteome Research, vol. 8, no. 2, pp. 907–916, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Vollmer, P. Hörth, and E. Nägele, “Optimization of two-dimensional off-line LC/MS separations to improve resolution of complex proteomic samples,” Analytical Chemistry, vol. 76, no. 17, pp. 5180–5185, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Fujii, T. Nakano, H. Hike et al., “Fully automated online multi-dimensional protein profiling system for complex mixtures,” Journal of Chromatography A, vol. 1057, no. 1-2, pp. 107–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. D. A. Wolters, M. P. Washburn, and J. R. Yates, “An automated multidimensional protein identification technology for shotgun proteomics,” Analytical Chemistry, vol. 73, no. 23, pp. 5683–5690, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Porath and P. Flodin, “Gel Filtration: a method for desalting and group separation,” Nature, vol. 183, no. 4676, pp. 1657–1659, 1959. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Yanagisawa, S. Tomida, K. Matsuo et al., “Seven-signal proteomic signature for detection of operable pancreatic ductal adenocarcinoma and their discrimination from autoimmune pancreatitis,” International Journal of Proteomics, vol. 2012, Article ID 510397, 11 pages, 2012. View at Google Scholar
  20. P. Picotti and R. Aebersold, “Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions,” Nature Methods, vol. 9, no. 6, pp. 555–566, 2012. View at Google Scholar · View at Scopus
  21. A. Vasilj, M. Gentzel, E. Ueberham, R. Gebhardt, and A. Shevchenko, “Tissue proteomics by one-dimensional gel electrophoresis combined with label-free protein quantification,” Journal of Proteome Research, vol. 11, no. 7, pp. 3680–3689, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Singh, P. Satishchandra, S. K. Shankar, and S. Ganesh, “Lafora disease in the Indian population: EPM2A and NHLRC1 gene mutations and their impact on subcellular localization of laforin and malin,” Human Mutation, vol. 29, no. 6, pp. E1–E12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Candiano, M. Bruschi, L. Musante et al., “Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis,” Electrophoresis, vol. 25, no. 9, pp. 1327–1333, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. J. X. Yan, R. Wait, T. Berkelman et al., “A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry,” Electrophoresis, vol. 21, no. 17, pp. 3666–3672, 2000. View at Google Scholar