Table of Contents
International Journal of Proteomics
Volume 2013, Article ID 125858, 15 pages
http://dx.doi.org/10.1155/2013/125858
Review Article

Serum Biomarkers Identification by Mass Spectrometry in High-Mortality Tumors

Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy

Received 10 August 2012; Revised 16 November 2012; Accepted 11 December 2012

Academic Editor: Visith Thongboonkerd

Copyright © 2013 Alessandra Tessitore et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Glas, A. Floore, L. J. M. J. Delahaye et al., “Converting a breast cancer microarray signature into a high-throughput diagnostic test,” BMC Genomics, vol. 7, article 278, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. E. Straver, A. M. Glas, J. Hannemann et al., “The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer,” Breast Cancer Research and Treatment, vol. 119, no. 3, pp. 551–558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Mook, M. Knauer, J. M. Bueno-De-Mesquita et al., “Metastatic potential of T1 breast cancer can be predicted by the 70-gene MammaPrint signature,” Annals of Surgical Oncology, vol. 17, no. 5, pp. 1406–1413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Zhou and T. D. Veenstra, “Mass spectrometry: m/z 1983–2008,” BioTechniques, vol. 44, no. 5, pp. 667–670, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. F. E. Ahmed, “Utility of mass spectrometry for proteome analysis—part I: conceptual and experimental approaches,” Expert Review of Proteomics, vol. 5, no. 6, pp. 841–864, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. E. P. Diamandis, “Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations,” Molecular and Cellular Proteomics, vol. 3, no. 4, pp. 367–378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. E. F. Petricoin, C. Belluco, R. P. Araujo, and L. A. Liotta, “The blood peptidome: a higher dimension of information content for cancer biomarker discovery,” Nature Reviews Cancer, vol. 6, no. 12, pp. 961–967, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. De Bock, D. de Seny, M. A. Meuwis et al., “Challenges for biomarker discovery in body fluids using SELDI-TOF-MS,” Journal of Biomedicine & Biotechnology, vol. 2010, Article ID 906082, 15 pages, 2010. View at Google Scholar · View at Scopus
  9. J. M. Jacobs, J. N. Adkins, W. J. Qian et al., “Utilizing human blood plasma for proteomic biomarker discovery,” Journal of Proteome Research, vol. 4, no. 4, pp. 1073–1085, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. N. L. Anderson, M. Polanski, R. Pieper et al., “The human plasma proteome: a non redundant list developed by combination of four separate sources,” Molecular and Cellular Proteomics, vol. 3, no. 4, pp. 311–326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Shen, J. Kim, E. F. Strittmatter et al., “Characterization of the human blood plasma proteome,” Proteomics, vol. 5, no. 15, pp. 4034–4045, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. L. A. Liotta and E. F. Petricoin, “Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold,” Journal of Clinical Investigation, vol. 116, no. 1, pp. 26–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. J. Leatherbarrow and P. D. Dean, “Studies on the mechanism of binding of serum albumins to immobilized cibacron blue F3G A,” Biochemical Journal, vol. 189, no. 1, pp. 27–34, 1980. View at Google Scholar · View at Scopus
  14. F. Di Girolamo, P. G. Righetti, A. D'Amato, and M. C. Chung, “Cibacron Blue and proteomics: the mystery of the platoon missing in action,” Journal of Proteomics, vol. 74, no. 12, pp. 2856–2865, 2011. View at Google Scholar
  15. N. Seam, D. A. Gonzales, S. J. Kern, G. L. Hortin, G. T. Hoehn, and A. F. Suffredini, “Quality control of serum albumin depletion for proteomic analysis,” Clinical Chemistry, vol. 53, no. 11, pp. 1915–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Björhall, T. Miliotis, and P. Davidsson, “Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples,” Proteomics, vol. 5, no. 1, pp. 307–317, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Guerrier, F. Fortis, and E. Boschetti, “Solid-phase fractionation strategies applied to proteomics investigations,” Methods in Molecular Biology, vol. 818, pp. 11–33, 2011. View at Google Scholar
  18. L. Guerrier, L. Lomas, and E. Boschetti, “A simplified monobuffer multidimensional chromatography for high-throughput proteome fractionation,” Journal of Chromatography A, vol. 1073, no. 1-2, pp. 25–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Orvisky, S. K. Drake, B. M. Martin et al., “Enrichment of low molecular weight fraction of serum for MS analysis of peptides associated with hepatocellular carcinoma,” Proteomics, vol. 6, no. 9, pp. 2895–2902, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Camerini, M. L. Polci, L. A. Liotta, E. F. Petricoin, and W. Zhou, “A method for the selective isolation and enrichment of carrier protein-bound low-molecular weight proteins and peptides in the blood,” Proteomics—Clinical Applications, vol. 1, no. 2, pp. 176–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. J. VanMeter, S. Camerini, M. L. Polci et al., “Serum low-molecular-weight protein fractionation for biomarker discovery,” Methods in Molecular Biology, vol. 823, pp. 237–249, 2012. View at Publisher · View at Google Scholar
  22. A. Luchini, D. H. Geho, B. Bishops et al., “Smart hydrogel particles: biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation,” Nano Letters, vol. 8, no. 1, pp. 350–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Luchini, C. Longo, V. Espina, E. F. Petricoin III, and L. A. Liotta, “Nanoparticle technology: addressing the fundamental roadblocks to protein biomarker discovery,” Journal of Materials Chemistry, vol. 19, no. 29, pp. 5071–5077, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Longo, A. Patanarut, T. George et al., “Core-shell hydrogel particles harvest, concentrate and preserve labile low abundance biomarkers,” PLoS One, vol. 4, no. 3, article e4763, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Tamburro, C. Fredolini, V. Espina et al., “Multifunctional core-shell nanoparticles: discovery of previously invisible biomarkers,” Journal of the American Chemical Society, vol. 133, no. 47, pp. 19178–19188, 2011. View at Google Scholar
  26. H. Zhang, X. J. Li, D. B. Martin, and R. Aebersold, “Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry,” Nature Biotechnology, vol. 21, no. 6, pp. 660–666, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Apweiler, H. Hermjakob, and N. Sharon, “On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database,” Biochimica et Biophysica Acta, vol. 1473, no. 1, pp. 4–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Tong, G. Baskaran, M. B. Jones, J. K. Rhee, and K. J. Yarema, “Glycosylation changes as markers for the diagnosis and treatment of human disease,” Biotechnology and Genetic Engineering Reviews, vol. 20, pp. 199–244, 2003. View at Google Scholar · View at Scopus
  29. Y. Tian, Y. Zhou, S. Elliott, R. Aebersold, and H. Zhang, “Solid-phase extraction of N-linked glycopeptides,” Nature Protocols, vol. 2, no. 2, pp. 334–339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Sun, J. A. Ranish, A. G. Utleg et al., “Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics,” Molecular and Cellular Proteomics, vol. 6, no. 1, pp. 141–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Kaji, H. Saito, Y. Yamauchi et al., “Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins,” Nature Biotechnology, vol. 21, no. 6, pp. 667–672, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Aebersold and M. Mann, “Mass spectrometry-based proteomics,” Nature, vol. 422, no. 6928, pp. 198–207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. J. R. Yates III, “Mass spectral analysis in proteomics,” Annual Review of Biophysics and Biomolecular Structure, vol. 33, pp. 297–316, 2004. View at Publisher · View at Google Scholar
  34. F. Hillenkamp, M. Karas, R. C. Beavis, and B. T. Chait, “Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers,” Analytical Chemistry, vol. 63, no. 24, pp. 1193A–1203A, 1991. View at Google Scholar · View at Scopus
  35. Y. Qu, B. L. Adam, Y. Yasui et al., “Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients,” Clinical Chemistry, vol. 48, no. 10, pp. 1835–1843, 2002. View at Google Scholar · View at Scopus
  36. Z. Zhang, R. C. Bast Jr., Y. Yu et al., “Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer,” Cancer Research, vol. 64, no. 16, pp. 5882–5890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. T. W. Hutchens and T. T. Yip, “New desorption strategies for the mass-spectrometric analysis of macromolecules,” Rapid Communications in Mass Spectrometry, vol. 7, pp. 576–580, 1993. View at Publisher · View at Google Scholar
  38. N. Tang, P. Tornatore, and S. R. Weinberger, “Current developments in SELDI affinity technology,” Mass Spectrometry Reviews, vol. 23, no. 1, pp. 34–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse, “Electrospray ionization for mass spectrometry of large biomolecules,” Science, vol. 246, no. 4926, pp. 64–71, 1989. View at Google Scholar · View at Scopus
  40. D. F. Hunt, J. R. Yates III, J. Shabanowitz, S. Winston, and C. R. Hauer, “Protein sequencing by tandem mass spectrometry,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 17, pp. 6233–6237, 1986. View at Google Scholar
  41. K. R. Kozak, F. Su, J. P. Whitelegge, K. Faull, S. Reddy, and R. Farias-Eisner, “Characterization of serum biomarkers for detection of early stage ovarian cancer,” Proteomics, vol. 5, no. 17, pp. 4589–4596, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Ye, D. W. Cramer, S. J. Skates et al., “Haptoglobin-α subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry,” Clinical Cancer Research, vol. 9, no. 8, pp. 2904–2911, 2003. View at Google Scholar · View at Scopus
  43. N. Ahmed, G. Barker, K. T. Oliva et al., “Proteomic-based identification of haptoglobin-1 precursor as a novel circulating biomarker of ovarian cancer,” British Journal of Cancer, vol. 91, no. 1, pp. 129–140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. H. R. Bergen III, G. Vasmatzis, W. A. Cliby, K. L. Johnson, A. L. Oberg, and D. C. Muddiman, “Discovery of ovarian cancer biomarkers in serum using NanoLC electrospray ionization TOF and FT-ICR mass spectrometry,” Disease Markers, vol. 19, no. 4-5, pp. 239–249, 2003-2004. View at Google Scholar · View at Scopus
  45. S. A. Moshkovskii, M. V. Serebryakova, K. B. Kuteykin-Teplyakov et al., “Ovarian cancer marker of 11.7 kDa detected by proteomics is a serum amyloid A1,” Proteomics, vol. 5, no. 14, pp. 3790–3797, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Woong-Shick, P. Sung-Pil, B. Su-Mi et al., “Identification of hemoglobin-α and -β subunits as potential serum biomarkers for the diagnosis and prognosis of ovarian cancer,” Cancer Science, vol. 96, no. 3, pp. 197–201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. M. F. Lopez, A. Mikulskis, S. Kuzdzal et al., “A novel, high-throughput workflow for discovery and identification of serum carrier protein-bound peptide biomarker candidates in ovarian cancer samples,” Clinical Chemistry, vol. 53, no. 6, pp. 1067–1074, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. Q. Wang, D. Li, W. Zhang, B. Tang, Q. Q. Li, and L. Li, “Evaluation of proteomics-identified CCL18 and CXCL1 as circulating tumor markers for differential diagnosis between ovarian carcinomas and benign pelvic masses,” International Journal of Biological Markers, vol. 26, no. 4, pp. 262–273, 2011. View at Google Scholar
  49. J. F. Timms, U. Menon, D. Devetyarov et al., “Early detection of ovarian cancer in samples pre-diagnosis using CA125 and MALDI-MS peaks,” Cancer Genomics Proteomics, vol. 8, no. 6, pp. 289–305, 2011. View at Google Scholar
  50. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA: A Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. U. Menon and I. J. Jacobs, “Recent developments in ovarian cancer screening,” Current Opinion in Obstetrics and Gynecology, vol. 12, no. 1, pp. 39–42, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. S. A. Cannistra, “Cancer of the ovary,” New England Journal of Medicine, vol. 351, no. 24, pp. 2519–2565, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. V. Nossov, M. Amneus, F. Su et al., “The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125?” American Journal of Obstetrics and Gynecology, vol. 199, no. 3, pp. 215–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. L. S. Cohen, P. F. Escobar, C. Scharm, B. Glimco, and D. A. Fishman, “Three-dimensional power doppler ultrasound improves the diagnostic accuracy for ovarian cancer prediction,” Gynecologic Oncology, vol. 82, no. 1, pp. 40–48, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Liu, J. He, C. Li et al., “Identification and confirmation of biomarkers using an integrated platform for quantitative analysis of glycoproteins and their glycosylations,” Journal of Proteome Research, vol. 9, no. 2, pp. 798–805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Paradis, F. Degos, D. Dargère et al., “Identification of a new marker of hepatocellular carcinoma by serum protein profiling of patients with chronic liver diseases,” Hepatology, vol. 41, no. 1, pp. 40–47, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. I. N. Lee, C. H. Chen, J. C. Sheu et al., “Identification of complement C3a as a candidate biomarker in human chronic hepatitis C and HCV-related hepatocellular carcinoma using a proteomics approach,” Proteomics, vol. 6, no. 9, pp. 2865–2873, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. M. H. Yang, Y. C. Tyan, S. B. Jong, Y. F. Huang, P. C. Liao, and M. C. Wang, “Identification of human hepatocellular carcinoma-related proteins by proteomic approaches,” Analytical and Bioanalytical Chemistry, vol. 388, no. 3, pp. 637–643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. N. T. Zinkin, F. Grall, K. Bhaskar et al., “Serum proteomics and biomarkers in hepatocellular carcinoma and chronic liver disease,” Clinical Cancer Research, vol. 14, no. 2, pp. 470–477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. M. He, J. Qin, R. Zhai et al., “Detection and identification of NAP-2 as a biomarker in hepatitis B-related hepatocellular carcinoma by proteomic approach,” Proteome Science, vol. 6, article 10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. F. X. Wu, Q. Wang, Z. M. Zhang et al., “Identifying serological biomarkers of hepatocellular carcinoma using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy,” Cancer Letters, vol. 279, no. 2, pp. 163–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. X. Kang, L. Sun, K. Guo et al., “Serum protein biomarkers screening in HCC patients with liver cirrhosis by ICAT-LC-MS/MS,” Journal of Cancer Research and Clinical Oncology, vol. 136, no. 8, pp. 1151–1159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Shu, X. Kang, K. Guo et al., “Diagnostic value of serum haptoglobin protein as hepatocellular carcinoma candidate marker complementary to α fetoprotein,” Oncology Reports, vol. 24, no. 5, pp. 1271–1276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. An, S. Bekesova, N. Edwards, and R. Goldman, “Peptides in low molecular weight fraction of serum associated with hepatocellular carcinoma,” Disease Markers, vol. 29, no. 1, pp. 11–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. J. T. Feng, Y. K. Liu, H. Y. Song et al., “Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis,” Proteomics, vol. 5, no. 17, pp. 4581–4588, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. W. Wu, J. Li, Y. Liu, C. Zhang, X. Meng, and Z. Zhou, “Comparative proteomic studies of serum from patients with hepatocellular carcinoma,” Journal of Investigative Surgery, vol. 25, no. 1, pp. 37–42, 2012. View at Publisher · View at Google Scholar
  67. E. F. Petricoin, A. M. Ardekani, B. A. Hitt et al., “Use of proteomic patterns in serum to identify ovarian cancer,” Lancet, vol. 359, no. 9306, pp. 572–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. K. R. Kozak, M. W. Amneus, S. M. Pusey et al., “Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: potential use in diagnosis and prognosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12343–12348, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Zhang, B. Kong, X. Qu, L. Jia, B. Deng, and Q. Yang, “Biomarker discovery for ovarian cancer using SELDI-TOF-MS,” Gynecologic Oncology, vol. 102, no. 1, pp. 61–66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. J. R. Hocker, E. A. Bishop, S. A. Lightfoot et al., “Serum profiling to distinguish early-and late-stage ovariancancer patients from disease-free individuals,” Cancer Investigation, vol. 30, no. 2, pp. 189–197, 2012. View at Publisher · View at Google Scholar
  71. B. A. Howard, M. Z. Wang, M. J. Campa, C. Corro, M. C. Fitzgerald, and E. F. Patz Jr., “Identification and validation of a potential lung cancer serum biomarker detected by matrix-assisted laser desorption/ionization-time of flight spectra analysis,” Proteomics, vol. 3, no. 9, pp. 1720–1724, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Dai, X. Wang, L. Liu et al., “Discovery and identification of Serum Amyloid A protein elevated in lung cancer serum,” Science in China, Series C, vol. 50, no. 3, pp. 305–311, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. W. C. S. Cho, T. T. Yip, W. W. Cheng, and J. S. K. Au, “Serum amyloid A is elevated in the serum of lung cancer patients with poor prognosis,” British Journal of Cancer, vol. 102, no. 12, pp. 1731–1735, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. X. Zeng, B. L. Hood, T. Zhao et al., “Lung cancer serum biomarker discovery using label-free liquid chromatography-tandem mass spectrometry,” Journal of Thoracic Oncology, vol. 6, no. 4, pp. 725–734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Liu, J. Liu, Y. Wang et al., “A combined biomarker pattern improves the discrimination of lung cancer,” Biomarkers, vol. 16, no. 1, pp. 20–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. H. J. Sung, J. M. Ahn, Y. H. Yoon et al., “Identification and validation of SAA as a potential lung cancer biomarker and its involvement in metastatic pathogenesis of lung cancer,” Journal of Proteome Research, vol. 10, no. 3, pp. 1383–1395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Bharti, P. C. Ma, G. Maulik et al., “Haptoglobin α-subunit and hepatocyte growth factor can potentially serve as serum tumor biomarkers in small cell lung cancer,” Anticancer Research, vol. 24, no. 2C, pp. 1031–1038, 2004. View at Google Scholar · View at Scopus
  78. L. Liu, J. Liu, S. Dai et al., “Reduced transthyretin expression in sera of lung cancer,” Cancer Science, vol. 98, no. 10, pp. 1617–1624, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Ueda, N. Saichi, S. Takami et al., “A comprehensive peptidome profiling technology for the identification of early detection biomarkers for lung adenocarcinoma,” PLoS One, vol. 6, no. 4, article e18567, 2011. View at Google Scholar
  80. H. J. An, S. Miyamoto, K. S. Lancaster et al., “Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer,” Journal of Proteome Research, vol. 5, no. 7, pp. 1626–1635, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. G. S. Leiserowitz, C. Lebrilla, S. Miyamoto et al., “Glycomics analysis of serum: a potential new biomarker for ovarian cancer?” International Journal of Gynecological Cancer, vol. 18, no. 3, pp. 470–475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Kojima, S. Asmellash, C. A. Klug, W. E. Grizzle, J. A. Mobley, and J. D. Christein, “Applying proteomic-based biomarker tools for the accurate diagnosis of pancreatic cancer,” Journal of Gastrointestinal Surgery, vol. 12, no. 10, pp. 1683–1690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Yokoi, L. C. Shih, R. Kobayashi et al., “Serum amyloid A as a tumor marker in sera of nude mice with orthotopic human pancreatic cancer and in plasma of patients with pancreatic cancer,” International Journal of Oncology, vol. 27, no. 5, pp. 1361–1369, 2005. View at Google Scholar · View at Scopus
  84. M. Ehmann, K. Felix, D. Hartmann et al., “Identification of potential markers for the detection of pancreatic cancer through comparative serum protein expression profiling,” Pancreas, vol. 34, no. 2, pp. 205–214, 2007. View at Publisher · View at Google Scholar
  85. J. S. Hanas, J. R. Hocker, J. Y. Cheung et al., “Biomarker identification in human pancreatic cancer sera,” Pancreas, vol. 36, no. 1, pp. 61–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. G. M. Fiedler, A. B. Leichtle, J. Kase et al., “Serum peptidome profiling revealed platelet factor 4 as a potential discriminating peptide associated with pancreatic cancer,” Clinical Cancer Research, vol. 15, no. 11, pp. 3812–3819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. Rong, D. Jin, C. Hou et al., “Proteomics analysis of serum protein profiling in pancreatic cancer patients by DIGE: up-regulation of mannose-binding lectin 2 and myosin light chain kinase 2,” BMC Gastroenterology, vol. 10, article 68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Matsubara, K. Honda, M. Ono et al., “Reduced plasma level of CXC chemokine ligand 7 in patients with pancreatic cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 1, pp. 160–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Pan, R. Chen, D. A. Crispin et al., “Protein alterations associated with pancreatic cancer and chronic pancreatitis found in human plasma using global quantitative proteomics profiling,” Journal of Proteome Research, vol. 10, no. 5, pp. 2359–2376, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Wang, Y. Kuramitsu, S. Yoshino et al., “Screening for serological biomarkers of pancreatic cancer by two-dimensional electrophoresis and liquid chromatography-tandem mass spectrometry,” Oncology Reports, vol. 26, no. 1, pp. 287–292, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Bloomston, J. X. Zhou, A. S. Rosemurgy, W. Frankel, C. A. Muro-Cacho, and T. J. Yeatman, “Fibrinogen γ overexpression in pancreatic cancer identified by large-scale proteomic analysis of serum samples,” Cancer Research, vol. 66, no. 5, pp. 2592–2599, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Guo, W. Wang, P. Liao et al., “Identification of serum biomarkers for pancreatic adenocarcinoma by proteomic analysis,” Cancer Science, vol. 100, no. 12, pp. 2292–2301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. A. S. Roberts, M. J. Campa, E. B. Gottlin et al., “Identification of potential prognostic biomarkers in patients with untreated, advanced pancreatic cancer from a phase 3 trial (Cancer and Leukemia Group B, 80303),” Cancer, vol. 118, no. 2, pp. 571–578, 2012. View at Google Scholar
  94. J. A. Marrero, “Hepatocellular carcinoma,” Current Opinion in Gastroenterology, vol. 22, no. 3, pp. 248–253, 2006. View at Publisher · View at Google Scholar
  95. H. E. Blum, “Hepatocellular carcinoma: therapy and prevention,” World Journal of Gastroenterology, vol. 11, no. 47, pp. 7391–7400, 2005. View at Google Scholar · View at Scopus
  96. K. A. Gebo, G. Chander, M. W. Jenckes et al., “Screening tests for hepatocellular carcinoma in patients with chronic hepatitis C: a systematic review,” Hepatology, vol. 36, no. 5, supplement 1, pp. S84–S92, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Göbel, S. Vorderwülbecke, K. Hauck, H. Fey, D. Häussinger, and A. Erhardt, “New multi protein patterns differentiate liver fibrosis stages and hepatocellular carcinoma in chronic hepatitis C serum samples,” World Journal of Gastroenterology, vol. 12, no. 47, pp. 7604–7612, 2006. View at Google Scholar
  98. S. Kanmura, H. Uto, K. Kusumoto et al., “Early diagnostic potential for hepatocellular carcinoma using the SELDI ProteinChip system,” Hepatology, vol. 45, no. 4, pp. 948–956, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. C. Wu, Z. Wang, L. Liu et al., “Surface enhanced laser desorption/ionization profiling: new diagnostic method of HBV-related hepatocellular carcinoma,” Journal of Gastroenterology and Hepatology, vol. 24, no. 1, pp. 55–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. L. Chen, D. W. Y. Ho, N. P. Y. Lee et al., “Enhanced detection of early hepatocellular carcinoma by serum SELDI-TOF proteomic signature combined with alpha-fetoprotein marker,” Annals of Surgical Oncology, vol. 17, no. 9, pp. 2518–2525, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Cui, X. Kang, Z. Dai et al., “Prediction of chronic hepatitis B, liver cirrhosis and hepatocellular carcinoma by SELDI-based serum decision tree classification,” Journal of Cancer Research and Clinical Oncology, vol. 133, no. 11, pp. 825–834, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Goldman, H. W. Ressom, R. S. Varghese et al., “Detection of hepatocellular carcinoma using glycomic analysis,” Clinical Cancer Research, vol. 15, no. 5, pp. 1808–1813, 2009. View at Google Scholar
  103. Z. Tang, R. S. Varghese, S. Bekesova et al., “Identification of N-glycan serum markers associated with hepatocellular carcinoma from mass spectrometry data,” Journal of Proteome Research, vol. 9, no. 1, pp. 104–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. R. S. Herbst, J. V. Heymach, and S. M. Lippman, “Molecular origins of cancer: lung cancer,” New England Journal of Medicine, vol. 359, no. 13, pp. 1367–1380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. M. V. Infante and J. H. Pedersen, “Screening for lung cancer: are we there yet?” Current Opinion in Pulmonary Medicine, vol. 16, no. 4, pp. 301–306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. C. Reddy, D. Chilla, and J. Boltax, “Lung cancer screening: a review of available data and current guidelines,” Hospital Practice, vol. 39, pp. 107–112, 2011. View at Google Scholar
  107. W. D. Travis, E. Brambilla, M. Noguchi et al., “International association for the study of lung cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary,” Proceedings of the American Thoracic Society, vol. 8, pp. 381–385, 2011. View at Google Scholar
  108. O. Lababede, M. Meziane, and T. Rice, “Seventh edition of the cancer staging manual and stage grouping of lung cancer: quick reference chart and diagrams,” Chest, vol. 139, no. 1, pp. 183–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. S. Cedrés, I. Nuñez, M. Longo et al., “Serum tumor markers CEA, CYFRA21-1, and CA-125 are associated with worse prognosis in advanced non-small-cell lung cancer (NSCLC),” Clinical Lung Cancer, vol. 12, no. 3, pp. 172–179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Chee, A. Naran, N. L. Misso, P. J. Thompson, and K. D. Bhoola, “Expression of tissue and plasma kallikreins and kinin B1 and B2 receptors in lung cancer,” Biological Chemistry, vol. 389, pp. 1225–1233, 2008. View at Google Scholar
  111. E. Wójcik, J. K. Kulpa, B. Sas-Korczyńska, S. Korzeniowski, and J. Jakubowicz, “ProGRP and NSE in therapy monitoring in patients with small cell lung cancer,” Anticancer Research, vol. 28, no. 5, pp. 3027–3033, 2008. View at Google Scholar · View at Scopus
  112. S. Y. Yang, X. Y. Xiao, W. G. Zhang et al., “Application of serum SELDI proteomic patterns in diagnosis of lung cancer,” BMC Cancer, vol. 5, article 83, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Han, Q. Liu, J. Yu, and S. Zheng, “Detection and significance of serum protein markers of small-cell lung cancer,” Journal of Clinical Laboratory Analysis, vol. 22, no. 2, pp. 131–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. R. T. Sreseli, H. Binder, M. Kuhn et al., “Identification of a 17-protein signature in the serum of lung cancer patients,” Oncology Reports, vol. 24, no. 1, pp. 263–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Du, S. Yang, X. Lin et al., “Use of anchorchip-time-of-flight spectrometry technology to screen tumor biomarker proteins in serum for small cell lung cancer,” Diagnostic Pathology, vol. 5, article 60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. X. Zeng, B. L. Hood, M. Sun et al., “Lung cancer serum biomarker discovery using glycoprotein capture and liquid chromatography mass spectrometry,” Journal of Proteome Research, vol. 9, no. 12, pp. 6440–6449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. P. B. Yildiz, Y. Shyr, J. S. M. Rahman et al., “Diagnostic accuracy of MALDI mass spectrometric analysis of unfractionated serum in lung cancer,” Journal of Thoracic Oncology, vol. 2, no. 10, pp. 893–901, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. C. Sperti, C. Pasquali, A. Piccoli, and S. Pedrazzoli, “Survival after resection for ductal adenocarcinoma of the pancreas,” British Journal of Surgery, vol. 83, no. 5, pp. 625–631, 1996. View at Publisher · View at Google Scholar · View at Scopus
  119. C. J. Yeo, J. L. Cameron, T. A. Sohn et al., “Pancreaticoduodenectomy with or without extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma: comparison of morbidity and mortality and short-term outcome,” Annals of Surgery, vol. 229, no. 5, pp. 613–624, 1999. View at Publisher · View at Google Scholar · View at Scopus
  120. J. D. Christein, M. L. Kendrick, C. W. Iqbal, D. M. Nagorney, and M. B. Farnell, “Distal pancreatectomy for resectable adenocarcinoma of the body and tail of the pancreas,” Journal of Gastrointestinal Surgery, vol. 9, no. 7, pp. 922–927, 2005. View at Publisher · View at Google Scholar · View at Scopus
  121. K. S. Goonetilleke and A. K. Siriwardena, “Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer,” European Journal of Surgical Oncology, vol. 33, no. 3, pp. 266–270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. D. Liu, L. Cao, J. Yu et al., “Diagnosis of pancreatic adenocarcinoma using protein chip technology,” Pancreatology, vol. 9, no. 1-2, pp. 127–135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. F. Navaglia, P. Fogar, D. Basso et al., “Pancreatic cancer biomarkers discovery by surface-enhanced laser desorption and ionization time-of-flight mass spectrometry,” Clinical Chemistry and Laboratory Medicine, vol. 47, no. 6, pp. 713–723, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Xue, C. J. Scarlett, L. Chung et al., “Discovery of serum biomarkers for pancreatic adenocarcinoma using proteomic analysis,” British Journal of Cancer, vol. 103, no. 3, pp. 391–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. B. K. Bloor, N. Tidman, I. M. Leigh et al., “Expression of keratin K2e in cutaneous and oral lesions: association with keratinocyte activation, proliferation, and keratinization,” American Journal of Pathology, vol. 162, no. 3, pp. 963–975, 2003. View at Google Scholar · View at Scopus
  126. S. A. Joosse, J. Hannemann, J. Spötter et al., “Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells,” Clinical Cancer Research, vol. 18, no. 4, pp. 993–1003, 2012. View at Google Scholar
  127. X. L. Jin, S. S. Zheng, B. S. Wang, and H. L. Chen, “Correlation of glycosyltransferases mRNA expression in extrahepatic bile duct carcinoma with clinical pathological characteristics,” Hepatobiliary and Pancreatic Diseases International, vol. 3, no. 2, pp. 292–295, 2004. View at Google Scholar · View at Scopus
  128. R. Prudent, C. F. Sautel, and C. Cochet, “Structure-based discovery of small molecules targeting different surfaces of protein-kinase CK2,” Biochimica et Biophysica Acta, vol. 1804, no. 3, pp. 493–498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. K. A. Zanetti, M. Haznadar, J. A. Welsh et al., “3′-UTR and functional secretor haplotypes in mannose-binding lectin2 are associated with increased colon cancer risk in African Americans,” Cancer Research, vol. 72, no. 6, pp. 1467–1477, 2012. View at Google Scholar
  130. N. S. Nevadunsky, I. Korneeva, T. Caputo, and S. S. Witkin, “Mannose-binding lectin codon 54 genetic polymorphism and vaginal protein levels in women with gynecologic malignancies,” European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 163, no. 2, pp. 216–218, 2012. View at Publisher · View at Google Scholar
  131. V. Urquidi, J. Kim, M. Chang, Y. Dai, C. J. Rosser, and S. Goodison, “CCL18 in a multiplex urine-based assay for the detection of bladder cancer,” PLoS One, vol. 7, no. 5, article e37797, 2012. View at Google Scholar
  132. Q. Chen, J. Fei, L. Wu et al., “Detection of cathepsin B, cathepsin L, cystatin C, urokinase plasminogen activator and urokinase plasminogen activator receptor in the sera of lung cancer patients,” Oncology Letters, vol. 2, no. 4, pp. 693–699, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. N. Chirwa, D. Govender, B. Ndimba et al., “A 40-50kDa glycoprotein associated with mucus is identified as α-1-acid glycoprotein in carcinoma of the stomach,” Journal of Cancer, vol. 3, pp. 83–92, 2012. View at Google Scholar
  134. G. Gruden, P. Carucci, V. Lolli et al., “Serum heat shock protein 27 levels in patients with hepatocellular carcinoma,” Cell Stress and Chaperones. In press.
  135. E. Kuhn, T. Addona, H. Keshishian et al., “Developing multiplexed assays for troponin I and interleukin-33 in plasma by peptide immunoaffinity enrichment and targeted mass spectrometry,” Clinical Chemistry, vol. 55, no. 6, pp. 1108–1117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. N. L. Anderson and N. G. Anderson, “The human plasma proteome: history, character, and diagnostic prospects,” Molecular & Cellular Proteomics, vol. 1, no. 11, pp. 845–867, 2002. View at Google Scholar · View at Scopus