Table of Contents
International Journal of Proteomics
Volume 2013 (2013), Article ID 135709, 9 pages
http://dx.doi.org/10.1155/2013/135709
Research Article

Proteomic Analysis of the Ontogenetic Variability in Plasma Composition of Juvenile and Adult Bothrops jararaca Snakes

1Laboratório de Herpetologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
2Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, Avenida Professor Lineu Prestes 2415, 05508-900 São Paulo, SP, Brazil
3Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil

Received 18 January 2013; Revised 1 April 2013; Accepted 3 April 2013

Academic Editor: Djuro Josic

Copyright © 2013 Karen de Morais-Zani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Warrell, “Clinical features of envenoming from snake bite,” in Envenomings and Their Treatments, C. Bon and M. Goyffon, Eds., pp. 63–76, Fondation Marcel Mérieux, Lyon, France, 1996. View at Google Scholar
  2. J. P. Chippaux, “Snake-bites: appraisal of the global situation,” Bulletin of the World Health Organization, vol. 76, no. 5, pp. 515–524, 1998. View at Google Scholar · View at Scopus
  3. A. Ohsaka, “Hemorragic, necrotizing and edma-forming effects of snake venoms,” in Snake Venoms, C. Y. Lee, Ed., pp. 480–546, Springer, Berlin, Germany, 1979. View at Google Scholar
  4. L. A. Ribeiro and M. T. Jorge, “Acidente por serpentes do gênero Bothrops: série de 3.139 casos,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 30, pp. 475–480, 1997. View at Google Scholar
  5. M. L. Santoro, I. S. Sano-Martins, H. W. Fan, J. L. Cardoso, R. D. G. Theakston, and D. A. Warrell, “Haematological evaluation of patients bitten by the jararaca, Bothrops jararaca, in Brazil,” Toxicon, vol. 51, no. 8, pp. 1440–1448, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Nahas, A. S. Kamiguti, F. Betti, I. S. Sano Martins, and M. I. Rodrigues, “Blood coagulation mechanism in the snakes Waglerophis merremii and Bothrops jararaca,” Comparative Biochemistry and Physiology Part A, vol. 69, no. 4, pp. 739–743, 1981. View at Google Scholar · View at Scopus
  7. S. Lizano, G. Domont, and J. Perales, “Natural phospholipase A2 myotoxin inhibitor proteins from snakes, mammals and plants,” Toxicon, vol. 42, no. 8, pp. 963–977, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Faure, “Natural inhibitors of toxic phospholipases A2,” Biochimie, vol. 82, no. 9-10, pp. 833–840, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. Burden, H. C. Hartzell, and D. Yoshikami, “Acetylcholine receptors at neuromuscular synapses: phylogenetic difference detected by snake α neurotoxins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 8, pp. 3245–3249, 1975. View at Google Scholar · View at Scopus
  10. D. Neumann, D. Barchan, M. Horowitz, E. Kochva, and S. Fuchs, “Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the α subunit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 18, pp. 7255–7259, 1989. View at Google Scholar · View at Scopus
  11. B. Ohana, Y. Fraenkel, G. Navon, and J. M. Gershoni, “Molecular dissection of cholinergic binding sites: how do snakes escape the effect of their own toxins?” Biochemical and Biophysical Research Communications, vol. 179, no. 1, pp. 648–654, 1991. View at Google Scholar · View at Scopus
  12. D. Barchan, S. Kachalsky, D. Neumann et al., “How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 16, pp. 7717–7721, 1992. View at Google Scholar · View at Scopus
  13. T. Omori-Satoh, S. Sadahiro, A. Ohsaka, and R. Murata, “Purification and characterization of an antihemorrhagic factor in the serum of Trimeresurus flavoviridis, a crotalid,” Biochimica et Biophysica Acta, vol. 285, no. 2, pp. 414–426, 1972. View at Google Scholar · View at Scopus
  14. M. Ovadia, “Purification and characterization of an antihemorrhagic factor from the serum of the snake Vipera palaestinae,” Toxicon, vol. 16, no. 6, pp. 661–672, 1978. View at Google Scholar · View at Scopus
  15. S. Weissenberg, M. Ovadia, G. Fleminger, and E. Kochva, “Antihemorrhagic factors from the blood serum of the western diamondback rattlesnake Crotalus atrox,” Toxicon, vol. 29, no. 7, pp. 807–818, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Pichyangkul and J. C. Perez, “Purification and characterization of a naturally occurring antihemorrhagic factor in the serum of the hispid cotton rat (Sigmodon hispidus),” Toxicon, vol. 19, no. 2, pp. 205–215, 1981. View at Google Scholar · View at Scopus
  17. M. Ovadia, E. Kochva, and B. Moav, “The neutralization mechanism of Vipera palaestinae neurotoxin by a purified factor from homologous serum,” Biochimica et Biophysica Acta, vol. 491, no. 2, pp. 370–386, 1977. View at Google Scholar · View at Scopus
  18. C. L. Fortes-Dias, B. C. B. Fonseca, E. Kochva, and C. R. Diniz, “Purification and properties of an antivenom factor from the plasma of the South American rattlesnake (Crotalus durissus terrificus),” Toxicon, vol. 29, no. 8, pp. 997–1008, 1991. View at Publisher · View at Google Scholar · View at Scopus
  19. C. L. Fortes-Dias, Y. Lin, J. Ewell, C. R. Diniz, and T. Y. Liu, “A phospholipase A2 inhibitor from the plasma of the South American rattlesnake (Crotalus durissus terrificus). Protein structure, genomic structure, and mechanism of action,” Journal of Biological Chemistry, vol. 269, no. 22, pp. 15646–15651, 1994. View at Google Scholar · View at Scopus
  20. J. Perales, C. Villela, G. B. Domont et al., “Molecular structure and mechanism of action of the crotoxin inhibitor from Crotalus durissus terrificus serum,” European Journal of Biochemistry, vol. 227, no. 1-2, pp. 19–26, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Shao, H. Shen, and B. Havsteen, “Purification, characterization and binding interactions of the Chinese-cobra (Naja naja atra) serum antitoxic protein CSAP,” Biochemical Journal, vol. 293, no. 2, pp. 559–566, 1993. View at Google Scholar · View at Scopus
  22. W. Xiaolu, B. Havsteen, and H. Hansen, “Evidence of the coevolution of a snake toxin and its endogenous antitoxin cloning, sequence and expression of a serum albumin cDNA of the Chinese cobra,” Biological Chemistry Hoppe-Seyler, vol. 376, no. 9, pp. 545–553, 1995. View at Google Scholar · View at Scopus
  23. S. Lizano, B. Lomonte, J. W. Fox, and J. M. Gutiérrez, “Biochemical characterization and pharmacological properties of a phospholipase A2 myotoxin inhibitor from the plasma of the snake Bothrops asper,” Biochemical Journal, vol. 326, no. 3, pp. 853–859, 1997. View at Google Scholar · View at Scopus
  24. S. Lizano, Y. Angulo, B. Lomonte et al., “Two phospholipase A2 inhibitors from the plasma of Cerrophidion (Bothrops) godmani which selectively inhibit two different group-II phospholipase A2 myotoxins from its own venom: isolation, molecular cloning and biological properties,” Biochemical Journal, vol. 346, no. 3, pp. 631–639, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. J. W. Fox and J. B. Bjarnason, “Metalloproteinase inhibitors,” in Enzymes from Snake Venoms, G. S. Bailey, Ed., pp. 559–632, Alaken Inc, Fort Collins, Colo, USA, 1998. View at Google Scholar
  26. J. C. Pérez and E. E. Sánchez, “Natural protease inhibitors to hemorrhagins in snake venoms and their potential use in medicine,” Toxicon, vol. 37, no. 5, pp. 703–728, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Perales and G. B. Domont, “Are inhibitors of metallopreoteinases, phospholipase A2 and myotoxins members os the innate immune system?” in Perspectives in Molecular Toxinology, A. Ménez, Ed., Wiley, Chichester, UK, 2002. View at Google Scholar
  28. C. L. Fortes-Dias, “Endogenous inhibitors of snake venom phospholipases A2 in the blood plasma of snakes,” Toxicon, vol. 40, no. 5, pp. 481–484, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. A. M. Tanaka-Azevedo, A. S. Tanaka, and I. S. Sano-Martins, “A new blood coagulation inhibitor from the snake Bothrops jararaca plasma: isolation and characterization,” Biochemical and Biophysical Research Communications, vol. 308, no. 4, pp. 706–712, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. C. O. Vieira, “Bothrops jararaca fibrinogen and its resistance to hydrolysis evoked by snake venoms,” Comparative Biochemistry and Physiology, vol. 151, no. 4, pp. 428–432, 2008. View at Google Scholar
  31. D. F. Vieira, L. Watanabe, C. D. Sant'ana et al., “Purification and characterization of jararassin-I, a thrombin-like enzyme from Bothrops jararaca snake venom,” Acta Biochimica et Biophysica Sinica, vol. 36, no. 12, pp. 798–802, 2004. View at Google Scholar · View at Scopus
  32. A. Zelanis, A. K. Tashima, M. M. T. Rocha et al., “Analysis of the ontogenetic variation in the venom proteome/peptidome of Bothrops jararaca reveals different strategies to deal with prey,” Journal of Proteome Research, vol. 9, no. 5, pp. 2278–2291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. A. Minton and S. A. Weinstein, “Geographic and ontogenic variation in venom of the western diamondback rattlesnake (Crotalus atrox),” Toxicon, vol. 24, no. 1, pp. 71–80, 1986. View at Google Scholar · View at Scopus
  34. S. P. Mackessy, “Venom ontogeny in the pacific rattlesnakes Crotalus viridis helleri and C. v. oreganus,” Copeia, vol. 1988, pp. 92–101, 1988. View at Google Scholar
  35. J. M. Gutierrez, C. Avila, Z. Camacho, and B. Lomonte, “Ontogenetic changes in the venom of the snake Lachesis muta stenophrys (bushmaster) from Costa Rica,” Toxicon, vol. 28, no. 4, pp. 419–426, 1990. View at Publisher · View at Google Scholar · View at Scopus
  36. J. M. Gutierrez, M. C. Dos Santos, M. De Fatima Furtado, and G. Rojas, “Biochemical and pharmacological similarities between the venoms of newborn Crotalus durissus durissus and adult Crotalus durissus terrificus rattlesnakes,” Toxicon, vol. 29, no. 10, pp. 1273–1277, 1991. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Saravia, E. Rojas, V. Arce et al., “Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: pathophysiological and therapeutic implications,” Revista de Biologia Tropical, vol. 50, no. 1, pp. 337–346, 2002. View at Google Scholar · View at Scopus
  38. M. F. D. Furtado, M. Maruyama, A. S. Kamiguti, and L. C. Antonio, “Comparative study of nine Bothrops snake venoms from adult female snakes and their offspring,” Toxicon, vol. 29, no. 2, pp. 219–226, 1991. View at Publisher · View at Google Scholar · View at Scopus
  39. J. L. López-Lozano, M. V. De Sousa, C. A. O. Ricart et al., “Ontogenetic variation of metalloproteinases and plasma coagulant activity in venoms of wild Bothrops atrox specimens from Amazonian rain forest,” Toxicon, vol. 40, no. 7, pp. 997–1006, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. R. A. P. Guércio, A. Shevchenko, A. Shevchenko et al., “Ontogenetic variations in the venom proteome of the Amazonian snake Bothrops atrox,” Proteome Science, vol. 4, article 11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Zelanis, J. de Souza Ventura, A. M. Chudzinski-Tavassi, and M. D. F. D. Furtado, “Variability in expression of Bothrops insularis snake venom proteases: an ontogenetic approach,” Comparative Biochemistry and Physiology C, vol. 145, no. 4, pp. 601–609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Monteiro, “Relação da Província do Brasil,” in História da Companhia de Jesus no Brasil, S. Leite, Ed., Instituto Nacional do Livro, Rio de Janeiro, Brazil, 1949. View at Google Scholar
  43. I. Sazima, “Natural history of the jararaca pitviper, Bothrops jararaca, in southeastern Brazil,” in Biology of the Pitvipers, J. A. Campbell and E. D. Brodie, Eds., pp. 199–216, Tyler, Selva, Spain, 1992. View at Google Scholar
  44. T. R. F. Janeiro-Cinquini, “Variação anual do sistema reprodutor de fêmeas de Bothrops jararaca (Serpentes, Viperidae),” Iheringia Série Zoologia, vol. 94, pp. 325–328, 2004. View at Google Scholar
  45. P. K. Smith, R. I. Krohn, and G. T. Hermanson, “Measurement of protein using bicinchoninic acid,” Analytical Biochemistry, vol. 150, no. 1, pp. 76–85, 1985. View at Google Scholar · View at Scopus
  46. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, “Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels,” Analytical Chemistry, vol. 68, no. 5, pp. 850–858, 1996. View at Publisher · View at Google Scholar · View at Scopus
  48. G. B. Domont, J. Perales, and H. Moussatche, “Natural anti-snake venom proteins,” Toxicon, vol. 29, no. 10, pp. 1183–1194, 1991. View at Publisher · View at Google Scholar · View at Scopus
  49. M. M. Thwin and P. Gopalakrishnakone, “Snake envenomation and protective natural endogenous proteins: a mini review of the recent developments (1991–1997),” Toxicon, vol. 36, no. 11, pp. 1471–1482, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. L. N. F. Darville, M. E. Merchant, A. Hasan, and K. K. Murray, “Proteome analysis of the leukocytes from the American alligator (Alligator mississippiensis) using mass spectrometry,” Comparative Biochemistry and Physiology Part D, vol. 5, no. 4, pp. 308–316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Stegemann, A. Kolobov, Y. F. Leonova et al., “Isolation, purification and de novo sequencing of TBD-1, the first beta-defensin from leukocytes of reptiles,” Proteomics, vol. 9, no. 5, pp. 1364–1373, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. V. Ignjatovic, C. Lai, R. Summerhayes et al., “Age-related differences in plasma proteins: how plasma proteins change from neonates to adults,” PLoS ONE, vol. 6, no. 2, Article ID e17213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. C. W. Vogel, D. C. Fritzinger, B. E. Hew, M. Thorne, and H. Bammert, “Recombinant cobra venom factor,” Molecular Immunology, vol. 41, no. 2-3, pp. 191–199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Rehana and R. Manjunatha Kini, “Molecular isoforms of cobra venom factor-like proteins in the venom of Austrelaps superbus,” Toxicon, vol. 50, no. 1, pp. 32–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Hensley, M. C. O'Keefe, and C. J. Spangler, “The effects of metal ions and temperature on the interaction of cobra venom factor and human complement Factor B,” Journal of Biological Chemistry, vol. 261, no. 24, pp. 11038–11044, 1986. View at Google Scholar · View at Scopus
  56. R. H. Valente, B. Dragulev, J. Perales, J. W. Fox, and G. B. Domont, “BJ46a, a snake venom metalloproteinase inhibitor isolation, characterization, cloning and insights into its mechanism of action,” European Journal of Biochemistry, vol. 268, no. 10, pp. 3042–3052, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. T. C. Antunes, K. M. Yamashita, K. C. Barbaro, M. Saiki, and M. L. Santoro, “Comparative analysis of newborn and adult Bothrops jararaca snake venoms,” Toxicon, vol. 56, no. 8, pp. 1443–1458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. F. R. Mandelbaum and M. R. Assakura, “Antigenic relationship of hemorrhagic factors and proteases isolated from the venoms of three species of Bothrops snakes,” Toxicon, vol. 26, no. 4, pp. 379–385, 1988. View at Google Scholar · View at Scopus
  59. M. J. I. Paine, H. P. Desmond, R. D. G. Theakston, and J. M. Crampton, “Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family,” Journal of Biological Chemistry, vol. 267, no. 32, pp. 22869–22876, 1992. View at Google Scholar · View at Scopus
  60. M. I. Estevão-Costa, B. C. Rocha, M. de Alvarenga Mudado, R. Redondo, G. R. Franco, and C. L. Fortes-Dias, “Prospection, structural analysis and phylogenetic relationships of endogenous γ-phospholipase A2 inhibitors in Brazilian Bothrops snakes (Viperidae, Crotalinae),” Toxicon, vol. 52, no. 1, pp. 122–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. P. G. Hains and K. W. Broady, “Purification and inhibitory profile of phospholipase A2 inhibitors from Australian elapid sera,” Biochemical Journal, vol. 346, no. 1, pp. 139–146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Shimada, N. Ohkura, K. Hayashi et al., “Subunit structure and inhibition specificity of α-type phospholipase A2 inhibitor from Protobothrops flavoviridis,” Toxicon, vol. 51, no. 5, pp. 787–796, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. A. M. Soares, S. Marcussi, R. G. Stábeli et al., “Structural and functional analysis of BmjMIP, a phospholipase A2 myotoxin inhibitor protein from Bothrops moojeni snake plasma,” Biochemical and Biophysical Research Communications, vol. 302, no. 2, pp. 193–200, 2003. View at Publisher · View at Google Scholar · View at Scopus