Table of Contents
International Journal of Proteomics
Volume 2013 (2013), Article ID 180605, 12 pages
http://dx.doi.org/10.1155/2013/180605
Review Article

Current Status and Advances in Quantitative Proteomic Mass Spectrometry

1Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
2Department of Gastroenterology and Liver Services, Concord Repatriation General Hospital, Sydeny, NSW 2139, Australia

Received 14 October 2012; Revised 16 January 2013; Accepted 21 January 2013

Academic Editor: Bomie Han

Copyright © 2013 Valerie C. Wasinger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. E. Ong and M. Mann, “Mass spectrometry-based proteomics turns quantitative,” Nature Chemical Biology, vol. 1, no. 5, pp. 252–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. H. Elliott, D. S. Smith, C. E. Parker, and C. Borchers, “Current trends in quantitative proteomics,” Journal of Mass Spectrometry, vol. 44, no. 12, pp. 1637–1660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Bantscheff, M. Schirle, G. Sweetman, J. Rick, and B. Kuster, “Quantitative mass spectrometry in proteomics: a critical review,” Analytical and Bioanalytical Chemistry, vol. 389, no. 4, pp. 1017–1031, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. W. X. Schulze and B. Usadel, “Quantitation in mass-spectrometry-based proteomics,” Annual Review of Plant Biology, vol. 61, pp. 491–516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. K. S. Lilley, A. Razzaq, and P. Dupree, “Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation,” Current Opinion in Chemical Biology, vol. 6, no. 1, pp. 46–50, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. P. Gygi, G. L. Corthals, Y. Zhang, Y. Rochon, and R. Aebersold, “Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 17, pp. 9390–9395, 2000. View at Google Scholar · View at Scopus
  7. L. Ly and V. C. Wasinger, “Protein and peptide fractionation, enrichment and depletion: tools for the complex proteome,” Proteomics, vol. 11, no. 4, pp. 513–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Ly and V. C. Wasinger, “Peptide enrichment and protein fractionation using selective electrophoresis,” Proteomics, vol. 8, no. 20, pp. 4197–4208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Findeisen and M. Neumaier, “Mass spectrometry based proteomics profiling as diagnostic tool in oncology: current status and future perspective,” Clinical Chemistry and Laboratory Medicine, vol. 47, no. 6, pp. 666–684, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Michalski, J. Cox, and M. Mann, “More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS,” Journal of Proteome Research, vol. 10, no. 4, pp. 1785–1793, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Liu, R. G. Sadygov, and J. R. Yates III, “A model for random sampling and estimation of relative protein abundance in shotgun proteomics,” Analytical Chemistry, vol. 76, no. 14, pp. 4193–4201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Rifai, M. A. Gillette, and S. A. Carr, “Protein biomarker discovery and validation: the long and uncertain path to clinical utility,” Nature Biotechnology, vol. 24, no. 8, pp. 971–983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Surinova, R. Schiess, R. Hüttenhain, F. Cerciello, B. Wollscheid, and R. Aebersold, “On the development of plasma protein biomarkers,” Journal of Proteome Research, vol. 10, no. 1, pp. 5–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Schiess, B. Wollscheid, and R. Aebersold, “Targeted proteomic strategy for clinical biomarker discovery,” Molecular Oncology, vol. 3, no. 1, pp. 33–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Boschetti, M. Chung, and P. G. Righetti, “‘The quest for biomarkers’: are we on the right technical track?” PROTEOMICS—Clinical Applications, vol. 6, no. 1-2, pp. 22–41, 2012. View at Publisher · View at Google Scholar
  16. G. L. Hortin, S. A. Jortani, J. C. Ritchie, R. Valdes, and D. W. Chan, “Proteomics: a new diagnostic frontier,” Clinical Chemistry, vol. 52, no. 7, pp. 1218–1222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Albalat, H. Mischak, and W. Mullen, “Clinical application of urinary proteomics/peptidomics,” Expert Review of Proteomics, vol. 8, no. 5, pp. 615–629, 2011. View at Publisher · View at Google Scholar
  18. R. D. Appel, J. R. Vargas, P. M. Palagi, D. Walther, and D. F. Hochstrasser, “Melanie II—a third-generation software package for analysis of two-dimensional electrophoresis images: II. Algorithms,” Electrophoresis, vol. 18, no. 15, pp. 2735–2748, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Bellew, M. Coram, M. Fitzgibbon et al., “A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS,” Bioinformatics, vol. 22, no. 15, pp. 1902–1909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. P. M. Palagi, D. Walther, M. Quadroni et al., “MSight: an image analysis software for liquid chromatography-mass spectrometry,” Proteomics, vol. 5, no. 9, pp. 2381–2384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. O. Kohlbacher, K. Reinert, C. Gröpl et al., “TOPP—the OpenMS proteomics pipeline,” Bioinformatics, vol. 23, no. 2, pp. e191–e197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. J. D. Jaffe, D. R. Mani, K. C. Leptos, G. M. Church, M. A. Gillette, and S. A. Carr, “PEPPeR, a platform for experimental proteomic pattern recognition,” Molecular and Cellular Proteomics, vol. 5, no. 10, pp. 1927–1941, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. L. N. Mueller, O. Rinner, A. Schmidt et al., “SuperHirn—a novel tool for high resolution LC-MS-based peptide/protein profiling,” Proteomics, vol. 7, no. 19, pp. 3470–3480, 2007. View at Publisher · View at Google Scholar
  24. B. C. Searle, “Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies,” Proteomics, vol. 10, no. 6, pp. 1265–1269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. J. C. Braisted, S. Kuntumalla, C. Vogel et al., “The APEX quantitative proteomics tool: generating protein quantitation estimates from LC-MS/MS proteomics results,” BMC Bioinformatics, vol. 9, article 529, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. W. X. Schulze and M. Mann, “A novel proteomic screen for peptide-protein interactions,” The Journal of Biological Chemistry, vol. 279, no. 11, pp. 10756–10764, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. D. K. Han, J. Eng, H. Zhou, and R. Aebersold, “Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry,” Nature Biotechnology, vol. 19, no. 10, pp. 946–951, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. X. J. Li, H. Zhang, J. A. Ranish, and R. Aebersold, “Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry,” Analytical Chemistry, vol. 75, no. 23, pp. 6648–6657, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. B. D. Halligan, R. Y. Slyper, S. N. Twigger, W. Hicks, M. Olivier, and A. S. Greene, “ZoomQuant: an application for the quantitation of stable isotope labeled peptides,” Journal of the American Society for Mass Spectrometry, vol. 16, no. 3, pp. 302–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. W. T. Lin, W. N. Hung, Y. H. Yian et al., “Multi-Q: a fully automated tool for multiplexed protein quantitation,” Journal of Proteome Research, vol. 5, no. 9, pp. 2328–2338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. I. P. Shadforth, T. P. J. Dunkley, K. S. Lilley, and C. Bessant, “i-Tracker: for quantitative proteomics using iTRAQ,” BMC Genomics, vol. 6, article 145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. B. MacLean, D. M. Tomazela, N. Shulman et al., “Skyline: an open source document editor for creating and analyzing targeted proteomics experiments,” Bioinformatics, vol. 26, no. 7, Article ID btq054, pp. 966–968, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Cox and M. Mann, “MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification,” Nature Biotechnology, vol. 26, no. 12, pp. 1367–1372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. D. B. Martin, T. Holzman, D. May et al., “MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments,” Molecular and Cellular Proteomics, vol. 7, no. 11, pp. 2270–2278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. N. L. Anderson and N. G. Anderson, “The human plasma proteome: history, character, and diagnostic prospects,” Molecular and Cellular Proteomics, vol. 1, no. 11, pp. 845–867, 2002. View at Google Scholar · View at Scopus
  36. G. S. Omenn, D. J. States, T. W. Blackwell et al., “Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study,” Nature Biotechnology, vol. 24, no. 3, pp. 333–338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. E. F. Petricoin, C. Belluco, R. P. Araujo, and L. A. Liotta, “The blood peptidome: a higher dimension of information content for cancer biomarker discovery,” Nature Reviews Cancer, vol. 6, no. 12, pp. 961–967, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. A. Hewel, S. Phanse, J. Liu, N. Bousette, A. Gramolini, and A. Emili, “Targeted protein identification, quantification and reporting for high-resolution nanoflow targeted peptide monitoring,” Journal of Proteomics, 2012. View at Publisher · View at Google Scholar
  39. S. M. Hanash, S. J. Pitteri, and V. M. Faca, “Mining the plasma proteome for cancer biomarkers,” Nature, vol. 452, no. 7187, pp. 571–579, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. W. C. S. Cho and C. H. K. Cheng, “Oncoproteomics: current trends and future perspectives,” Expert Review of Proteomics, vol. 4, no. 3, pp. 401–410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Granger, J. Siddiqui, S. Copeland, and D. Remick, “Albumin depletion of human plasma also removes low abundance proteins including the cytokines,” Proteomics, vol. 5, no. 18, pp. 4713–4718, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Bellei, S. Bergamini, E. Monari et al., “High-abundance proteins depletion for serum proteomic analysis: concomitant removal of non-targeted proteins,” Amino Acids, vol. 40, no. 1, pp. 145–156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. A. J. Rai and F. Vitzthum, “Effects of preanalytical variables on peptide and protein measurements in human serum and plasma: implications for clinical proteomics,” Expert Review of Proteomics, vol. 3, no. 4, pp. 409–426, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Aebersold and M. Mann, “Mass spectrometry-based proteomics,” Nature, vol. 422, no. 6928, pp. 198–207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Reker and L. Malmström, “Bioinformatic challenges in targeted proteomics,” Journal of Proteome Research, vol. 11, no. 9, pp. 4393–4402, 2012. View at Publisher · View at Google Scholar
  46. N. Yang, S. Feng, K. Shedden et al., “Urinary glycoprotein biomarker discovery for bladder cancer detection using LC/MS-MS and label-free quantification,” Clinical Cancer Research, vol. 17, no. 10, pp. 3349–3359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. L. F. Quintana, J. M. Campistol, M. P. Alcolea, E. Bañon-Maneus, A. Solé-González, and P. R. Cutillas, “Application of label-free quantitative peptidomics for the identification of urinary biomarkers of kidney chronic allograft dysfunction,” Molecular and Cellular Proteomics, vol. 8, no. 7, pp. 1658–1673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. J. S. Hanas, J. R. Hocker, J. Y. Cheung et al., “Biomarker identification in human pancreatic cancer sera,” Pancreas, vol. 36, no. 1, pp. 61–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Xue, B. Lü, J. Zhang et al., “Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach,” Journal of Proteome Research, vol. 9, no. 1, pp. 545–555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Besson, A. H. Pavageau, I. Valo et al., “A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker,” Molecular and Cellular Proteomics, vol. 10, no. 12, Article ID M111.009712, 2011. View at Publisher · View at Google Scholar
  51. O. P. Bondar, D. R. Barnidge, E. W. Klee, B. J. Davis, and G. G. Klee, “LC-MS/MS quantification of Zn-α2 glycoprotein: a potential serum biomarker for prostate cancer,” Clinical Chemistry, vol. 53, no. 4, pp. 673–678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Chaerkady, H. C. Harsha, A. Nalli et al., “A quantitative proteomic approach for identification of potential biomarkers in hepatocellular carcinoma,” Journal of Proteome Research, vol. 7, no. 10, pp. 4289–4298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Dayon, A. Hainard, V. Licker et al., “Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags,” Analytical Chemistry, vol. 80, no. 8, pp. 2921–2931, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Wang, J. You, K. G. Bemis, T. J. Tegeler, and D. P. G. Brown, “Label-free mass spectrometry-based protein quantification technologies in proteomic analysis,” Briefings in Functional Genomics and Proteomics, vol. 7, no. 5, pp. 329–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. W. M. Old, K. Meyer-Arendt, L. Aveline-Wolf et al., “Comparison of label-free methods for quantifying human proteins by shotgun proteomics,” Molecular and Cellular Proteomics, vol. 4, no. 10, pp. 1487–1502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Prakash, B. Piening, J. Whiteaker et al., “Assessing bias in experiment design for large scale mass spectrometry-based quantitative proteomics,” Molecular and Cellular Proteomics, vol. 6, no. 10, pp. 1741–1748, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Rappsilber, U. Ryder, A. I. Lamond, and M. Mann, “Large-scale proteomic analysis of the human spliceosome,” Genome Research, vol. 12, no. 8, pp. 1231–1245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Xixi, P. Dimitraki, K. Vougas, S. Kossida, G. Lubec, and M. Fountoulakis, “Proteomic analysis of the mouse brain following protein enrichment by preparative electrophoresis,” Electrophoresis, vol. 27, no. 7, pp. 1424–1431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. W. Zhu, J. W. Smith, and C. M. Huang, “Mass spectrometry-based label-free quantitative proteomics,” Journal of Biomedicine & Biotechnology, vol. 2010, Article ID 840518, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. S. E. Ong, L. J. Foster, and M. Mann, “Mass spectrometric-based approaches in quantitative proteomics,” Methods, vol. 29, no. 2, pp. 124–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Julka and F. Regnier, “Quantification in proteomics through stable isotope coding: a review,” Journal of Proteome Research, vol. 3, no. 3, pp. 350–363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. S. E. Ong, B. Blagoev, I. Kratchmarova et al., “Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics,” Molecular and Cellular Proteomics, vol. 1, no. 5, pp. 376–386, 2002. View at Google Scholar · View at Scopus
  63. S. P. Gygi, B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold, “Quantitative analysis of complex protein mixtures using isotope-coded affinity tags,” Nature Biotechnology, vol. 17, no. 10, pp. 994–999, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Schmidt, J. Kellermann, and F. Lottspeich, “A novel strategy for quantitative proteomics using isotope-coded protein labels,” Proteomics, vol. 5, no. 1, pp. 4–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Stahl-Zeng, V. Lange, R. Ossola et al., “High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites,” Molecular and Cellular Proteomics, vol. 6, no. 10, pp. 1809–1817, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Anderson and C. L. Hunter, “Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins,” Molecular and Cellular Proteomics, vol. 5, no. 4, pp. 573–588, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Keshishian, T. Addona, M. Burgess, E. Kuhn, and S. A. Carr, “Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution,” Molecular and Cellular Proteomics, vol. 6, no. 12, pp. 2212–2229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. M. J. McKay, J. Sherman, M. T. Laver, M. S. Baker, S. J. Clarke, and M. P. Molloy, “The development of multiple reaction monitoring assays for liver-derived plasma proteins,” PROTEOMICS—Clinical Applications, vol. 1, no. 12, pp. 1570–1581, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Kirsch, J. Widart, J. Louette, J. F. Focant, and E. De Pauw, “Development of an absolute quantification method targeting growth hormone biomarkers using liquid chromatography coupled to isotope dilution mass spectrometry,” Journal of Chromatography A, vol. 1153, no. 1-2, pp. 300–306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Kuhn, J. Wu, J. Karl, H. Liao, W. Zolg, and B. Guild, “Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards,” Proteomics, vol. 4, no. 4, pp. 1175–1186, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Fortin, A. Salvador, J. P. Charrier et al., “Clinical quantitation of prostate-specific antigen biomarker in the low nanogram/milliliter range by conventional bore liquid chromatography-tandem mass spectrometry (multiple reaction monitoring) coupling and correlation with ELISA tests,” Molecular and Cellular Proteomics, vol. 8, no. 5, pp. 1006–1015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Huillet, A. Adrait, D. Lebert et al., “Accurate quantification of cardiovascular biomarkers in serum using protein standard absolute quantification (PSAQ) and selected reaction monitoring,” Molecular and Cellular Proteomics, vol. 11, no. 2, Article ID M111.008235, 2012. View at Publisher · View at Google Scholar
  73. Y. Zhao, W. Jia, W. Sun et al., “Combination of improved 18O incorporation and multiple reaction monitoring: a universal strategy for absolute quantitative verification of serum candidate biomarkers of liver cancer,” Journal of Proteome Research, vol. 9, no. 6, pp. 3319–3327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Kuhn, T. Addona, H. Keshishian et al., “Developing multiplexed assays for troponin I and interleukin-33 in plasma by peptide immunoaffinity enrichment and targeted mass spectrometry,” Clinical Chemistry, vol. 55, no. 6, pp. 1108–1117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Lopez, R. Kuppusamy, D. Sarracino et al., “Mass spectrometric discovery and selective reaction monitoring (SRM) of putative protein biomarker candidates in first trimester trisomy 21 maternal serum,” Journal of Proteome Research, vol. 10, no. 1, pp. 133–142, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Domanski, A. J. Percy, J. Yang et al., “MRMbased multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma,” Proteomics, vol. 12, no. 8, pp. 1222–1243, 2012. View at Publisher · View at Google Scholar
  77. A. Thompson, J. Schäfer, K. Kuhn et al., “Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS,” Analytical Chemistry, vol. 75, no. 8, pp. 1895–1904, 2003. View at Google Scholar
  78. P. L. Ross, Y. N. Huang, J. N. Marchese et al., “Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents,” Molecular and Cellular Proteomics, vol. 3, no. 12, pp. 1154–1169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Wiese, K. A. Reidegeld, H. E. Meyer, and B. Warscheid, “Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research,” Proteomics, vol. 7, no. 3, pp. 340–350, 2007. View at Publisher · View at Google Scholar
  80. K. Aggarwal, L. H. Choe, and K. H. Lee, “Shotgun proteomics using the iTRAQ isobaric tags,” Briefings in Functional Genomics and Proteomics, vol. 5, no. 2, pp. 112–120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Latterich, M. Abramovitz, and B. Leyland-Jones, “Proteomics: new technologies and clinical applications,” European Journal of Cancer, vol. 44, no. 18, pp. 2737–2741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. K. L. Simpson, A. D. Whetton, and C. Dive, “Quantitative mass spectrometry-based techniques for clinical use: biomarker identification and quantification,” Journal of Chromatography B, vol. 877, no. 13, pp. 1240–1249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. V. Lange, P. Picotti, B. Domon, and R. Aebersold, “Selected reaction monitoring for quantitative proteomics: a tutorial,” Molecular Systems Biology, vol. 4, no. 1, article 222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. S. A. Gerber, J. Rush, O. Stemman, M. W. Kirschner, and S. P. Gygi, “Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 6940–6945, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. W. J. Qian, J. M. Jacobs, T. Liu, D. G. Camp, and R. D. Smith, “Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications,” Molecular and Cellular Proteomics, vol. 5, no. 10, pp. 1727–1744, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Wolf-Yadlin, S. Hautaniemi, D. A. Lauffenburger, and F. M. White, “Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 14, pp. 5860–5865, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Ludwig, M. Claassen, A. Schmidt, and R. Aebersold, “Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry,” Molecular and Cellular Proteomics, vol. 11, no. 3, Article ID M111.013987, 2012. View at Publisher · View at Google Scholar
  88. T. A. Addona, S. E. Abbatiello, B. Schilling et al., “Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma,” Nature Biotechnology, vol. 27, no. 7, pp. 633–641, 2009. View at Publisher · View at Google Scholar
  89. S. Gallien, E. Duriez, C. Crone, M. Kellmann, T. Moehring, and B. Domon, “Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer,” Molecular and Cellular Proteomics, vol. 11, no. 12, pp. 1709–1723, 2012. View at Publisher · View at Google Scholar
  90. A. C. Peterson, J. D. Russell, D. J. Bailey, M. S. Westphall, and J. J. Coon, “Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics,” Molecular and Cellular Proteomics, vol. 11, no. 11, pp. 1475–1488, 2012. View at Publisher · View at Google Scholar
  91. K. Köhler and H. Seitz, “Validation processes of protein biomarkers in serum—a cross platform comparison,” Sensors, vol. 12, no. 9, pp. 12710–12728, 2012. View at Publisher · View at Google Scholar
  92. S. F. Kingsmore, “Multiplexed protein measurement: technologies and applications of protein and antibody arrays,” Nature Reviews Drug Discovery, vol. 5, no. 4, pp. 310–321, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. A. A. Ellington, I. J. Kullo, K. R. Bailey, and G. G. Klee, “Antibody-based protein multiplex platforms: technical and operational challenges,” Clinical Chemistry, vol. 56, no. 2, pp. 186–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. N. L. Anderson, N. G. Anderson, L. R. Haines, D. B. Hardie, R. W. Olafson, and T. W. Pearson, “Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA),” Journal of Proteome Research, vol. 3, no. 2, pp. 235–244, 2004. View at Publisher · View at Google Scholar · View at Scopus