Table of Contents
International Journal of Proteomics
Volume 2013, Article ID 674282, 10 pages
http://dx.doi.org/10.1155/2013/674282
Research Article

Quantitative Proteomics via High Resolution MS Quantification: Capabilities and Limitations

1Global Discovery and Development Statistics, Lilly Research Laboratories, Indianapolis, IN 46285, USA
2Lilly Corporate Center, DC 0720, Indianapolis, IN 46285, USA
3Translational Sciences, Lilly Research Laboratories, Indianapolis, IN 46285, USA

Received 15 October 2012; Accepted 6 February 2013

Academic Editor: Valerie Wasinger

Copyright © 2013 Richard E. Higgs et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Higgs, M. D. Knierman, V. Gelfanova, J. P. Butler, and J. E. Hale, “Comprehensive label-free method for the relative quantification of proteins from biological samples,” Journal of Proteome Research, vol. 4, no. 4, pp. 1442–1450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Mortensen, J. W. Gouw, J. V. Olsen et al., “MSQuant, an open source platform for mass spectrometry-based quantitative proteomics,” Journal of Proteome Research, vol. 9, no. 1, pp. 393–403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Cox and M. Mann, “MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification,” Nature Biotechnology, vol. 26, no. 12, pp. 1367–1372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. E. Monroe, J. L. Shaw, D. S. Daly, J. N. Adkins, and R. D. Smith, “MASIC: a software program for fast quantitation and flexible visualization of chromatographic profiles from detected LC-MS(/MS) features,” Computational Biology and Chemistry, vol. 32, no. 3, pp. 215–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. K. Park, J. D. Venable, T. Xu, and J. R. Yates III., “A quantitative analysis software tool for mass spectrometry-based proteomics,” Nature Methods, vol. 5, no. 4, pp. 319–322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. T. A. Addona, X. Shi, H. Keshishian et al., “A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease,” Nature Biotechnology, vol. 29, no. 7, pp. 635–643, 2011. View at Publisher · View at Google Scholar
  7. L. N. Mueller, O. Rinner, A. Schmidt et al., “SuperHirn-a novel tool for high resolution LC-MS-based peptide/protein profiling,” Proteomics, vol. 7, no. 19, pp. 3470–3480, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Schilling, M. J. Rardin, B. X. MacLean et al., “Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation,” Molecular & Cellular Proteomics, vol. 11, no. 5, pp. 202–214, 2012. View at Publisher · View at Google Scholar
  9. B. Zybailov, M. K. Coleman, L. Florens, and M. P. Washburn, “Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling,” Analytical Chemistry, vol. 77, no. 19, pp. 6218–6224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. E. Ong, B. Blagoev, I. Kratchmarova et al., “Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics,” Molecular & Cellular Proteomics, vol. 1, no. 5, pp. 376–386, 2002. View at Google Scholar · View at Scopus
  11. H. Wang, S. Alvarez, and L. M. Hicks, “Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering,” Journal of Proteome Research, vol. 11, no. 1, pp. 487–501, 2012. View at Publisher · View at Google Scholar
  12. A. M. Falick, W. S. Lane, K. S. Lilley et al., “ABRF-PRG07: advanced quantitative proteomics study,” Journal of Biomolecular Techniques, vol. 22, no. 1, pp. 21–26, 2011. View at Google Scholar · View at Scopus
  13. C. Y. Chang, P. Picotti, R. Huttenhain et al., “Protein significance analysis in selected reaction monitoring (SRM) measurements,” Molecular & Cellular Proteomics, vol. 11, no. 4, Article ID M111.014662, 2012. View at Publisher · View at Google Scholar
  14. L. Y. Geer, S. P. Markey, J. A. Kowalak et al., “Open mass spectrometry search algorithm,” Journal of Proteome Research, vol. 3, no. 5, pp. 958–964, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Craig and R. C. Beavis, “A method for reducing the time required to match protein sequences with tandem mass spectra,” Rapid Communications in Mass Spectrometry, vol. 17, no. 20, pp. 2310–2316, 2003. View at Google Scholar · View at Scopus
  16. I. V. Shilov, S. L. Seymourt, A. A. Patel et al., “The paragon algorithm, a next generation search engine that uses sequence temperature values sequence temperature values and feature probabilities to identify peptides from tandem mass spectra,” Molecular and Cellular Proteomics, vol. 6, no. 9, pp. 1638–1655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Käll, J. D. Canterbury, J. Weston, W. S. Noble, and M. J. MacCoss, “Semi-supervised learning for peptide identification from shotgun proteomics datasets,” Nature Methods, vol. 4, no. 11, pp. 923–925, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Käll, J. D. Storey, M. J. MacCoss, and W. S. Noble, “Assigning significance to peptides identified by tandem mass spectrometry using decoy databases,” Journal of Proteome Research, vol. 7, no. 1, pp. 29–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Magrane and U. Consortium, “UniProt Knowledgebase: a hub of integrated protein data,” Database, vol. 2011, Article ID bar009, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. R Foundation for Statistical Computing, R: A Language and Environment for Statistical Computing [Computer Program], R Foundation for Statistical Computing, Vienna, Austria, 2012.
  21. E. A. Chambers, “An introduction to meta-analysis with articles from the journal of educational research (1992–2002),” Journal of Educational Research, vol. 98, no. 1, pp. 35–44, 2004. View at Google Scholar · View at Scopus
  22. H. M. Cooper, L. V. Hedges, and J. C. Valentine, The Handbook of Research Synthesis and Meta-Analysis, Russell Sage Foundation, New York, NY, USA, 2nd edition, 2009.