Table of Contents
International Journal of Proteomics
Volume 2014, Article ID 594761, 12 pages
http://dx.doi.org/10.1155/2014/594761
Research Article

Mapping and Identification of the Urine Proteome of Prostate Cancer Patients by 2D PAGE/MS

1Research Centre for Genetic Engineering and Biotechnology “Georgi D Efremov”, Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, Macedonia
2University Clinic for Urology, University Clinical Centre “Mother Theresa”, 1000 Skopje, Macedonia
3Institute of Pathology, Medical Faculty, University of “St. Cyril and Methodius”, 1000 Skopje, Macedonia

Received 26 June 2014; Revised 1 August 2014; Accepted 2 August 2014; Published 20 August 2014

Academic Editor: Petra Zürbig

Copyright © 2014 Sanja Kiprijanovska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Decramer, A. G. de Peredo, B. Breuil et al., “Urine in clinical proteomics,” Molecular and Cellular Proteomics, vol. 7, no. 10, pp. 1850–1862, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. G. L. Hortin and D. Sviridov, “Diagnostic potential for urinary proteomics,” Pharmacogenomics, vol. 8, no. 3, pp. 237–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. N. G. Anderson, N. L. Anderson, and S. L. Tollaksen, “Proteins in human urine. I. Concentration and analysis by two-dimensional electrophoresis,” Clinical Chemistry, vol. 25, no. 7, pp. 1199–1210, 1979. View at Google Scholar · View at Scopus
  4. J. Adachi, C. Kumar, Y. Zhang, J. V. Olsen, and M. Mann, “The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins,” Genome Biology, vol. 7, no. 9, article R80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. Q. R. Li, K. X. Fan, R. X. Li et al., “A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine,” Rapid Communications in Mass Spectrometry, vol. 24, no. 6, pp. 823–832, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Marimuthu, R. N. O'Meally, R. Chaerkady et al., “A comprehensive map of the human urinary proteome,” Journal of Proteome Research, vol. 10, no. 6, pp. 2734–2743, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Candiano, L. Santucci, A. Petretto et al., “2D-electrophoresis and the urine proteome map: where do we stand?” Journal of Proteomics, vol. 73, no. 5, pp. 829–844, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Magdeldin, S. Enany, Y. Yoshida et al., “Basics and recent advances of two dimensional-polyacrylamide gel electrophoresis,” Clinical Proteomics, vol. 11, no. 1, article 16, 2014. View at Publisher · View at Google Scholar
  9. E. R. Suárez, J. Siwy, P. Zürbig, and H. Mischak, “Urine as a source for clinical proteome analysis: from discovery to clinical application,” Biochimica et Biophysica Acta, vol. 1844, no. 5, pp. 884–898, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Albalat, H. Mischak, and W. Mullen, “Clinical application of urinary proteomics/peptidomics,” Expert Review of Proteomics, vol. 8, no. 5, pp. 615–629, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Gabay and I. Kushner, “Acute-phase proteins and other systemic responses to inflammation,” The New England Journal of Medicine, vol. 340, no. 6, pp. 448–454, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Akiyama, T. Furukawa, T. Sumizawa et al., “The role of thymidine phosphorylase, an angiogenic enzyme, in tumor progression,” Cancer Science, vol. 95, no. 11, pp. 851–857, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Honda, H. Tanaka, and H. Yasuda, “Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53,” The FEBS Letters, vol. 420, no. 1, pp. 25–27, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. J. D. Oliner, J. A. Pietenpol, S. Thiagalingam, J. Gyuris, K. W. Kinzler, and B. Vogelstein, “Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53,” Nature, vol. 362, no. 6423, pp. 857–860, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Meulmeester, Y. Pereg, Y. Shiloh, and A. G. Jochemsen, “ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation,” Cell Cycle, vol. 4, no. 9, pp. 1166–1170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Tennstedt, C. Bolch, G. Strobel et al., “Patterns of TPD52 overexpression in multiple human solid tumor types analyzed by quantitative PCR,” International Journal of Oncology, vol. 44, no. 2, pp. 609–615, 2014. View at Google Scholar
  18. M. J. Clague and S. Urbé, “Ubiquitin: same molecule, different degradation pathways,” Cell, vol. 143, no. 5, pp. 682–685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Mukhopadhyay and H. Riezman, “Proteasome-independent functions of ubiquitin in endocytosis and signaling,” Science, vol. 315, no. 5809, pp. 201–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. B. M. Kessler, “Ubiquitin–omics reveals novel networks and associations with human disease,” Current Opinion in Chemical Biology, vol. 17, no. 1, pp. 59–65, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. M. Bataineh and O. Habbal, “Immunoreactivity of ubiqitin in human prostate gland,” Neuroendocrinology Letters, vol. 27, no. 4, pp. 517–522, 2006. View at Google Scholar · View at Scopus
  22. C. A. Dinarello, “Proinflammatory cytokines,” Chest, vol. 118, no. 2, pp. 503–508, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Bertazza and S. Mocellin, “The dual role of tumor necrosis factor (TNF) in cancer biology,” Current Medicinal Chemistry, vol. 17, no. 29, pp. 3337–3352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. P. de Caestecker, E. Piek, and A. B. Roberts, “Role of transforming growth factor-β signaling in cancer,” Journal of the National Cancer Institute, vol. 92, no. 17, pp. 1388–1402, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. M. R. Zaidi and G. Merlino, “The two faces of interferon-γ in cancer,” Clinical Cancer Research, vol. 17, no. 19, pp. 6118–6124, 2011. View at Publisher · View at Google Scholar · View at Scopus