Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2010, Article ID 436178, 9 pages
http://dx.doi.org/10.1155/2010/436178
Research Article

Bimodal Porous Scaffolds by Sequential Electrospinning of Poly(glycolic acid) with Sucrose Particles

1Department of Surgery, VA Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
2Department of Surgery, University of California at Los Angeles, Los Angeles, CA 90095, USA
3Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA 90095, USA

Received 20 November 2009; Revised 20 January 2010; Accepted 20 January 2010

Academic Editor: Shanfeng Wang

Copyright © 2010 B. Wulkersdorfer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993. View at Google Scholar · View at Scopus
  2. T. C. Grikscheit and J. P. Vacanti, “The history and current status of tissue engineering: the future of pediatric surgery,” Journal of Pediatric Surgery, vol. 37, no. 3, pp. 277–288, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. D. W. Hutmacher, “Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives,” Journal of Biomaterials Science, Polymer Edition, vol. 12, no. 1, pp. 107–124, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Sharma and J. H. Elisseeff, “Engineering structurally organized cartilage and bone tissues,” Annals of Biomedical Engineering, vol. 32, no. 1, pp. 148–159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Rosso, G. Marino, A. Giordano, M. Barbarisi, D. Parmeggiani, and A. Barbarisi, “Smart materials as scaffolds for tissue engineering,” Journal of Cellular Physiology, vol. 203, no. 3, pp. 465–470, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. W. J. Li, K. G. Danielson, P. G. Alexander, and R. S. Tuan, “Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds,” Journal of Biomedical Materials Research A, vol. 67, no. 4, pp. 1105–1114, 2003. View at Google Scholar · View at Scopus
  7. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, “Electrospun nanofibrous structure: a novel scaffold for tissue engineering,” Journal of Biomedical Materials Research, vol. 60, no. 4, pp. 613–621, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. N. Ashammakhi and P. Rokkanen, “Absorbable polyglycolide devices in trauma and bone surgery,” Biomaterials, vol. 18, no. 1, pp. 3–9, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Liang, B. S. Hsiao, and B. Chu, “Functional electrospun nanofibrous scaffolds for biomedical applications,” Advanced Drug Delivery Reviews, vol. 59, no. 14, pp. 1392–1412, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. S. Y. Chew, Y. Wen, Y. Dzenis, and K. W. Leong, “The role of electrospinning in the emerging field of nanomedicine,” Current Pharmaceutical Design, vol. 12, no. 36, pp. 4751–4770, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. C. Thomson, M. J. Yaszemski, J. M. Powers, and A. G. Mikos, “Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration,” Biomaterials, vol. 19, no. 21, pp. 1935–1943, 1998. View at Google Scholar · View at Scopus
  12. P. X. Ma and R. Zhang, “Synthetic nano-scale fibrous extracellular matrix,” Journal of Biomedical Materials Research, vol. 46, no. 1, pp. 60–72, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Zhang and P. X. Ma, “Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone- tissue engineering. I. Preparation and morphology,” Journal of Biomedical Materials Research, vol. 44, no. 4, pp. 446–455, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” Biomaterials, vol. 21, no. 24, pp. 2529–2543, 2000. View at Google Scholar · View at Scopus
  15. M. H. Sheridan, L. D. Shea, M. C. Peters, and D. J. Mooney, “Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery,” Journal of Controlled Release, vol. 64, no. 1–3, pp. 91–102, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Singh, V. Kumar, and B. D. Ratner, “Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications,” Biomaterials, vol. 25, no. 13, pp. 2611–2617, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Kuboki, Q. Jin, and H. Takita, “Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis,” Journal of Bone and Joint Surgery. America, vol. 83, supplement 1, part 2, pp. S105–115, 2001. View at Google Scholar
  18. I. C. Um, D. Fang, B. S. Hsiao, A. Okamoto, and B. Chu, “Electro-spinning and electro-blowing of hyaluronic acid,” Biomacromolecules, vol. 5, no. 4, pp. 1428–1436, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. G. I. Taylor, “Electrically driven jets,” Proceedings of the Royal Society of London, vol. 313, pp. 453–475, 1969. View at Google Scholar
  20. C. P. Barnes, S. A. Sell, E. D. Boland, D. G. Simpson, and G. L. Bowlin, “Nanofiber technology: designing the next generation of tissue engineering scaffolds,” Advanced Drug Delivery Reviews, vol. 59, no. 14, pp. 1413–1433, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. Q. P. Pham, U. Sharma, and A. G. Mikos, “Electrospinning of polymeric nanofibers for tissue engineering applications: a review,” Tissue Engineering, vol. 12, no. 5, pp. 1197–1211, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, “Controlling the fiber diameter during electrospinning,” Physical Review Letters, vol. 90, no. 14, Article ID 144502, 4 pages, 2003. View at Google Scholar · View at Scopus
  23. S. G. Kumbar, R. James, S. P. Nukavarapu, and C. T. Laurencin, “Electrospun nanofiber scaffolds: engineering soft tissues,” Biomedical Materials, vol. 3, no. 3, Article ID 034002, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. Eichhorn and W. W. Sampson, “Statistical geometry of pores and statistics of porous nanofibrous assemblies,” Journal of the Royal Society Interface, vol. 2, no. 4, pp. 309–318, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. I. K. Kwon, S. Kidoaki, and T. Matsuda, “Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential,” Biomaterials, vol. 26, no. 18, pp. 3929–3939, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. J. Nam, Y. Huang, S. Agarwal, and J. Lannutti, “Improved cellular infiltration in electrospun fiber via engineered porosity,” Tissue Engineering, vol. 13, no. 9, pp. 2249–2257, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. S. Kidoaki, I. K. Kwon, and T. Matsuda, “Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques,” Biomaterials, vol. 26, no. 1, pp. 37–46, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. F. Leong, M. Z. Rasheed, T. C. Lim, and K. S. Chian, “In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique,” Journal of Biomedical Materials Research, vol. 91, no. 1, pp. 231–240, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. V. M. Pantojas, E. Velez, D. Hernandez, and W. Otano, “Initial study on fibers and coatings for the fabrication of bioscaffolds,” Puerto Rico Health Sciences Journal, vol. 28, no. 3, pp. 258–265, 2009. View at Google Scholar · View at Scopus
  30. X. Zhu, W. Cui, X. Li, and Y. Jin, “Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering,” Biomacromolecules, vol. 9, no. 7, pp. 1795–1801, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. J. C. Middleton and A. J. Tipton, “Synthetic biodegradable polymers as orthopedic devices,” Biomaterials, vol. 21, no. 23, pp. 2335–2346, 2000. View at Google Scholar · View at Scopus
  32. S. G. Kumbar, S. Bhattacharyya, S. Sethuraman, and C. T. Laurencin, “A preliminary report on a novel electrospray technique for nanoparticle based biomedical implants coating: precision electrospraying,” Journal of Biomedical Materials Research B, vol. 81, no. 1, pp. 91–103, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. K. J. L. Burg, W. D. Holder Jr., C. R. Culberson et al., “Comparative study of seeding methods for three-dimensional polymeric scaffolds,” Journal of Biomedical Materials Research, vol. 51, no. 4, pp. 642–649, 2000. View at Google Scholar · View at Scopus
  34. G. Vunjak-Novakovic, B. Obradovic, I. Martin, P. M. Bursac, R. Langer, and L. E. Freed, “Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering,” Biotechnology Progress, vol. 14, no. 2, pp. 193–202, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. S. S. Kim, C. A. Sundback, S. Kaihara et al., “Dynamic seeding and in vitro culture of hepatocytes in a flow perfusion system,” Tissue Engineering, vol. 6, no. 1, pp. 39–44, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. Y. Li, T. Ma, D. A. Kniss, L. C. Lasky, and S. T. Yang, “Effects of filtration seeding on cell density, spatial distribution, and proliferation in nonwoven fibrous matrices,” Biotechnology Progress, vol. 17, no. 5, pp. 935–944, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus