Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2012 (2012), Article ID 907049, 8 pages
Research Article

Physical Properties of Soy-Phosphate Polyol-Based Rigid Polyurethane Foams

1Department of Biological Engineering, University of Missouri-Columbia, 248 AE Building, Columbia, MO 65211, USA
2Department of Chemical Engineering, University of Missouri-Columbia, W2033 Lafferre Hall, Columbia, MO 65211, USA

Received 28 October 2011; Accepted 21 December 2011

Academic Editor: Jose Ramon Leiza

Copyright © 2012 Hongyu Fan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Water-blown rigid polyurethane (PU) foams were made from 0–50% soy-phosphate polyol (SPP) and 2–4% water as the blowing agent. The mechanical and thermal properties of these SPP-based PU foams (SPP PU foams) were investigated. SPP PU foams with higher water content had greater volume, lower density, and compressive strength. SPP PU foams with 3% water content and 20% SPP had the lowest thermal conductivity. The thermal conductivity of SPP PU foams decreased and then increased with increasing SPP percentage, resulting from the combined effects of thermal properties of the gas and solid polymer phases. Higher isocyanate density led to higher compressive strength. At the same isocyanate index, the compressive strength of some 20% SPP foams was close or similar to the control foams made from VORANOL 490.