Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013, Article ID 104502, 8 pages
http://dx.doi.org/10.1155/2013/104502
Research Article

Application of Box-Behnken Design in Optimization of Glucose Production from Oil Palm Empty Fruit Bunch Cellulose

School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Received 23 July 2013; Accepted 8 October 2013

Academic Editor: Yulin Deng

Copyright © 2013 Satriani Aga Pasma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. A. Rahman, J. P. Choudhury, and A. L. Ahmad, “Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid,” Biochemical Engineering Journal, vol. 30, no. 1, pp. 97–103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S.-P. Fan, S. Zakaria, C.-H. Chia Chin-Hua et al., “Comparative studies of products obtained from solvolysis liquefaction of oil palm empty fruit bunch fibres using different solvents,” Bioresource Technology, vol. 102, no. 3, pp. 3521–3526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. T. L. Chew and S. Bhatia, “Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery,” Bioresource Technology, vol. 99, no. 17, pp. 7911–7922, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Ahmadzadeh and S. Zakaria, “Kinetics of oil palm empty fruit bunch phenolysis in the presence of sulfuric acid as a catalyst,” Journal of Applied Polymer Science, vol. 106, no. 5, pp. 3529–3533, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Jiménez, L. Serrano, A. Rodríguez, and R. Sánchez, “Soda-anthraquinone pulping of palm oil empty fruit bunches and beating of the resulting pulp,” Bioresource Technology, vol. 100, no. 3, pp. 1262–1267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Rodríguez, L. Serrano, A. Moral, A. Pérez, and L. Jiménez, “Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches,” Bioresource Technology, vol. 99, no. 6, pp. 1743–1749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. E. Wyman, “Ethanol from lignocellulosic biomass: technology, economics, and opportunities,” Bioresource Technology, vol. 50, no. 1, pp. 3–15, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Zheng, L. Fang, Y. Xu, J.-J. Dong, Y. Ni, and Z.-H. Sun, “Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes,” Bioresource Technology, vol. 101, no. 20, pp. 7889–7894, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Husson, S. Buchoux, C. Avondo et al., “Enzymatic hydrolysis of ionic liquid-pretreated celluloses: contribution of CP-MAS 13C NMR and SEM,” Bioresource Technology, vol. 102, no. 15, pp. 7335–7342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. H. A. Rahman, J. P. Choudhury, A. L. Ahmad, and A. H. Kamaruddin, “Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose,” Bioresource Technology, vol. 98, no. 3, pp. 554–559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistic for Experimenters, John Wiley & Sons, New York, NY, USA, 1978.
  12. C.-H. Dong, X.-Q. Xie, X.-L. Wang, Y. Zhan, and Y.-J. Yao, “Application of Box-Behnken design in optimisation for polysaccharides extraction from cultured mycelium of Cordyceps sinensis,” Food and Bioproducts Processing, vol. 87, no. 2, pp. 139–144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Chemical Analysis and Testing Standard Procedure, “National Renewable Energy Laboratories,” Golden, Co., NREL, 002-004, 1996.
  14. R. El Hage, L. Chrusciel, L. Desharnais, and N. Brosse, “Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification,” Bioresource Technology, vol. 101, no. 23, pp. 9321–9329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A.-I. Yeh, Y.-C. Huang, and S. H. Chen, “Effect of particle size on the rate of enzymatic hydrolysis of cellulose,” Carbohydrate Polymers, vol. 79, no. 1, pp. 192–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Martín-Sampedro, A. Rodríguez, A. Ferrer, L. L. García-Fuentevilla, and M. E. Eugenio, “Biobleaching of pulp from oil palm empty fruit bunches with laccase and xylanase,” Bioresource Technology, vol. 110, pp. 371–378, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Zhao, C. L. Jones, G. A. Baker, S. Xia, O. Olubajo, and V. N. Person, “Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis,” Journal of Biotechnology, vol. 139, no. 1, pp. 47–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Kunamneni and S. Singh, “Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production,” Biochemical Engineering Journal, vol. 27, no. 2, pp. 179–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. D. G. Lin, “Evolutionary technique of factorial experiment,” Journal of Tropical Crops, vol. 13, pp. 51–56, 1992. View at Google Scholar