Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013 (2013), Article ID 156289, 10 pages
http://dx.doi.org/10.1155/2013/156289
Research Article

Synthesis and Characterizations of Poly(trimethylene terephthalate)-b-poly(tetramethylene glycol) Copolymers

College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China

Received 30 June 2013; Revised 1 October 2013; Accepted 1 October 2013

Academic Editor: Giridhar Madras

Copyright © 2013 Feng Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Roslaniec, “Polyester thermoplastic elastomers: synthesis, properties, and some applications,” in Handbook of Condensation Elastomers, S. Fakirov, Ed., chapter 3, pp. 77–116, Wiley-VCH, Weinheim, Germany, 2005. View at Google Scholar
  2. R. K. Adams, G. K. Hoeschele, and W. K. Witsiepe, “Thermoplastic polyether-ester elastomers,” in ThermoPlastic Elastomers, G. Holden, H. R. Kricheldorf, and R. P. Quirk, Eds., chapter 8, pp. 183–216, Hanser, Munich, Germany, 2004. View at Google Scholar
  3. G. Holden, N. R. Legge, H. E. Schweder, and R. P. Quirk, Thermoplastic Elastomers, Chemical Industry Press, Beijing, China, 2000.
  4. J. J. Zeilstra, “Influencing the crystallization behavior of pet-based segmented copoly(ether ester),” Journal of Applied Polymer Science, vol. 31, no. 7, pp. 1977–1997, 1986. View at Google Scholar · View at Scopus
  5. Z. Roslaniec and D. Pietkiewicz, “Synthesis and characteristics of polyester-based thermoplastic elastomers: chemical aspects,” in Handbook of Thermoplastic Polyesters: Homopolymers, Copolymers, Blends, and Composites, S. Fakirov, Ed., chapter 13, pp. 581–642, Wiley-VCH, Weinheim, Germany, 2002. View at Google Scholar
  6. Y. Nagai, D. Nakamura, T. Miyake et al., “Photodegradation mechanisms in poly(2,6-butylenenaphthalate-co-tetramethyleneglycol) (PBN-PTMG). I: influence of the PTMG content,” Polymer Degradation and Stability, vol. 88, no. 2, pp. 251–255, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. C. Stevenson and S. L. Cooper, “Multiple endothermic melting behavior in poly(tetramethylene terephthalate)-containing polyesters and block copolyetehr-esters,” Journal of Polymer Science, Part B, vol. 26, no. 5, pp. 953–966, 1988. View at Google Scholar · View at Scopus
  8. K. P. Perry, W. J. Jackson, and R. J. Caldwell, “Elastomers based on polycyclic bisphenol polycarbonates,” Journal of Applied Polymer Science, vol. 9, no. 10, pp. 3451–3463, 1965. View at Google Scholar
  9. J. R. Whinfield and J. T. Dickson, “Improvements relating to the manufacture of highly polymeric substances,” Br. Patent 578,079, 1941.
  10. J. R. Whinfield and J. T. Dickson, “Polymeric linear terephthalic esters,” US 2465319 A, 1949.
  11. H. H. Chuah, “Orientation and structure development in poly(trimethylene terephthalate) tensile drawing,” Macromolecules, vol. 34, no. 20, pp. 6985–6993, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. J. S. Grebowicz, H. Brown, H. Chuah et al., “Deformation of undrawn poly(trimethylene terephthalate) (PTT) fibers,” Polymer, vol. 42, no. 16, pp. 7153–7160, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Zhang, “Study of poly(trimethylene terephthalate) as an engineering thermoplastics material,” Journal of Applied Polymer Science, vol. 91, no. 3, pp. 1657–1666, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Run, Y. Wang, C. Yao, and H. Zhao, “Isothermal-crystallization kinetics and melting behavior of crystalline/crystalline blends of poly(trimethylene terephthalate) and poly(ethylene 2,6-naphthalate),” Journal of Applied Polymer Science, vol. 103, no. 5, pp. 3316–3325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Wang, M. Yao, H.-S. Wang, X. Li, and M.-T. Run, “Mechanical property, crystal morphology and nonisothermal crystallization kinetics of poly(trimethylene terephthalate)/maleinized acrylonitrile-butadiene-styrene blends,” Journal of Macromolecular Science, Part B, vol. 52, no. 4, pp. 574–589, 2013. View at Google Scholar
  16. M. Run, Y. Hao, H. Song, and X. Hu, “Spherulite morphology and thermal behaviors of short carbon fiber/poly(trimethylene terephthalate) composites,” Journal of Macromolecular Science, Part B, vol. 48, no. 1, pp. 13–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Wang, C.-Z. Wang, H.-Z. Song, and M.-T. Run, “Dynamic rheological and dynamic thermomechanical properties of poly(trimethylene terephthalate)/short carbon fibre composites,” Composites Interface, vol. 20, no. 5, pp. 355–363, 2013. View at Google Scholar
  18. J. Wang, C.-Z. Wang, and M.-T. Run, “Study on morphology, rheology and mechanical properties of poly(trimethylene terephthalate)/CaCO3 nanocomposites,” International Journal of Polymer Science, vol. 2013, Article ID 890749, 8 pages, 2013. View at Publisher · View at Google Scholar
  19. E. I. du pont de nemours and company, “Polyether-ester elastomer comprising polytrimethylene ether-ester soft segment and tetramethylene ester hard segment,” USA Patent 6562457, May 2003.
  20. A. Szymczyk, E. Senderek, J. Nastalczyk, and Z. Roslaniec, “New multiblock poly(ether-ester)s based on poly(trimethylene terephthalate) as rigid segments,” European Polymer Journal, vol. 44, no. 2, pp. 436–443, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A.-P. Li, W.-J. Han, and Y.-S. Chen, “Molecular weight measurement of poly(trimethylene terephthalate) using viscosity method,” Polyester Industry, vol. 14, no. 2, pp. 19–22, 2001 (Chinese). View at Google Scholar
  22. S. Fakirov, A. A. Apostolov, P. Boeseke, and H. G. Zachmann, “Structure of segmented poly(ether ester)s as revealed by synchrotron radiation,” Journal of Macromolecular Science: Physics, vol. B29, no. 4, pp. 379–395, 1990. View at Google Scholar · View at Scopus