Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013 (2013), Article ID 175609, 6 pages
http://dx.doi.org/10.1155/2013/175609
Research Article

A Nanocellulose Polypyrrole Composite Based on Tunicate Cellulose

Dawei Zhang,1,2,3 Qing Zhang,1,2,3 Xin Gao,1,2,3 and Guangzhe Piao1,2,3

1Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao 266042, China
2Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao 266042, China
3School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Received 1 June 2013; Accepted 12 July 2013

Academic Editor: Zhou Yang

Copyright © 2013 Dawei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Mihranyan, L. Nyholm, A. E. Garcia Bennett, and M. Strømme, “A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose,” Journal of Physical Chemistry B, vol. 112, no. 39, pp. 12249–12255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Müller, C. R. Rambo, C. R. Recouvreux, L. M. Porto, and G. M. O. Barra, “Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers,” Synthetic Metals, vol. 161, no. 1-2, pp. 106–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Pecher and S. Mecking, “Nanoparticles of conjugated polymers,” Chemical Reviews, vol. 110, no. 10, pp. 6260–6279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. B. Bjorklund and B. Liedberg, “Electrically conducting composites of colloidal polypyrrole and methylcellulose,” Journal of the Chemical Society, Chemical Communications, no. 16, pp. 1293–1295, 1986. View at Google Scholar · View at Scopus
  5. S. P. Arms and B. Vincent, “Dispersions of electrically conducting polypyrrole particles in aqueous media,” Journal of the Chemical Society, Chemical Communications, no. 4, pp. 288–290, 1987. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Y. Men'shikova, B. M. Shabsel's, and T. G. Evseeva, “Synthesis of polypyrrole nanoparticles by dispersion polymerization,” Journal of Applied Chemistry, vol. 76, no. 5, pp. 822–826.
  7. J. Jang, J. H. Oh, and G. D. Stucky, “Fabrication of ultrafine conducting polymer and graphite nanoparticles,” Angewandte Chemie, vol. 41, no. 21, pp. 4016–4019, 2002. View at Google Scholar
  8. X.-G. Li, Z.-Z. Hou, M.-R. Huang, and M. G. Moloney, “Efficient synthesis of intrinsically conducting polypyrrole nanoparticles containing hydroxy sulfoaniline as key self-stabilized units,” Journal of Physical Chemistry C, vol. 113, no. 52, pp. 21586–21595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Sasso, N. Bruyant, D. Beneventi et al., “Polypyrrole (PPy) chemical synthesis with xylan in aqueous medium and production of highly conducting PPy/nanofibrillated cellulose films and coatings,” Cellulose, vol. 18, no. 6, pp. 1455–1467, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. D. W. Zhang, L. H. Zhang, B. Z. Wang, and G. Z. Piao, “Nanocomposites of polyaniline and cellulose nanocrystals prepared in lyotropic chiral nematic liquid crystals,” Journal of Materials, vol. 2013, Article ID 614507, 6 pages, 2013. View at Publisher · View at Google Scholar
  11. C. Sasso, E. Zeno, M. Petit-Conil et al., “Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties,” Macromolecular Materials and Engineering, vol. 295, no. 10, pp. 934–941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Dall'Acqua, C. Tonin, R. Peila, F. Ferrero, and M. Catellani, “Performances and properties of intrinsic conductive cellulose-polypyrrole textiles,” Synthetic Metals, vol. 146, no. 2, pp. 213–221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Dall'Acqua, C. Tonin, A. Varesano, M. Canetti, W. Porzio, and M. Catellani, “Vapour phase polymerisation of pyrrole on cellulose-based textile substrates,” Synthetic Metals, vol. 156, no. 5-6, pp. 379–386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Beneventi, S. Alila, S. Boufi, D. Chaussy, and P. Nortier, “Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation—Pyrrole polymerization sequence,” Cellulose, vol. 13, no. 6, pp. 725–734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Molina, A. I. del Río, J. Bonastre, and F. Cases, “Electrochemical polymerisation of aniline on conducting textiles of polyester covered with polypyrrole/AQSA,” European Polymer Journal, vol. 45, no. 4, pp. 1302–1315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Cucchi, A. Boschi, C. Arosio, F. Bertini, G. Freddi, and M. Catellani, “Bio-based conductive composites: preparation and properties of polypyrrole (PPy)-coated silk fabrics,” Synthetic Metals, vol. 159, no. 3-4, pp. 246–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Rußler, K. Sakakibara, and T. Rosenau, “Cellulose as matrix component of conducting films,” Cellulose, vol. 18, no. 4, pp. 937–944, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Nyström, A. Razaq, M. Strømme, L. Nyholm, and A. Mihranyan, “Ultrafast all-polymer paper-based batteries,” Nano Letters, vol. 9, no. 10, pp. 3635–3639, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Nyström, A. Mihranyan, A. Razaq, T. Lindström, L. Nyholm, and M. Strømme, “A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood,” Journal of Physical Chemistry B, vol. 114, no. 12, pp. 4178–4182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Mihranyan, “Cellulose from cladophorales green algae: from environmental problem to high-tech composite materials,” Journal of Applied Polymer Science, vol. 119, no. 4, pp. 2449–2460, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Razaq, L. Nyholm, M. Strømme, and A. Mihranyan, “Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes,” Advanced Energy Materials, vol. 2, no. 4, pp. 445–454, 2012. View at Google Scholar
  22. M. Wu, S. Kuga, and Y. Huang, “Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils,” Langmuir, vol. 24, no. 18, pp. 10494–10497, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Saito, Y. Nishiyama, J.-L. Putaux, M. Vignon, and A. Isogai, “Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose,” Biomacromolecules, vol. 7, no. 6, pp. 1687–1691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Berlioz, S. Molina-Boisseau, Y. Nishiyama, and L. Heux, “Gas-phase surface esterification of cellulose microfibrils and whiskers,” Biomacromolecules, vol. 10, no. 8, pp. 2144–2151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Kimura and T. Itoh, “Cellulose synthesizing terminal complexes in the ascidians,” Cellulose, vol. 11, pp. 377–383, 2004. View at Google Scholar
  26. M. M. S. Lima and R. Borsali, “Static and dynamic light scattering from polyelectrolyte microcrystal cellulose,” Langmuir, vol. 18, no. 4, pp. 992–996, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Li, Z. Liu, M. Al-Haik et al., “Magnetic alignment of cellulose nanowhiskers in an all-cellulose composite,” Polymer Bulletin, vol. 65, no. 6, pp. 635–642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Dugan, J. E. Gough, and S. J. Eichhorn, “Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers,” Biomacromolecules, vol. 11, no. 9, pp. 2498–2504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. S. A. Samir, F. Alloin, and A. Dufresne, “Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field,” Biomacromolecules, vol. 6, no. 2, pp. 612–626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Jang and H. O. Joon, “Novel crystalline supramolecular assemblies of amorphous polypyrrole nanoparticles through surfactant templating,” Chemical Communications, no. 19, pp. 2200–2201, 2002. View at Google Scholar · View at Scopus
  31. F. F. Bruno, R. Nagarajan, S. Roy, J. Kumar, and L. A. Samuelson, “Biomimetic Synthesis of Water Soluble Conducting Polypyrrole and Poly(3,4-ehtylenedioxythiophene),” Journal of Macromolecular Science A, vol. 40, no. 12, pp. 1327–1333, 2003. View at Publisher · View at Google Scholar · View at Scopus