Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013, Article ID 541823, 5 pages
http://dx.doi.org/10.1155/2013/541823
Research Article

Thermal Conductivity of Epoxy Resin Reinforced with Magnesium Oxide Coated Multiwalled Carbon Nanotubes

School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, China

Received 9 June 2013; Accepted 2 August 2013

Academic Editor: Yingkui Yang

Copyright © 2013 Fei-Peng Du et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Y. Paik, V. K. Pamula, and K. Chakrabarty, “Adaptive cooling of integrated circuits using digital microfluidics,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 4, pp. 432–443, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Abyzov, S. V. Kidalov, and F. M. Shakhov, “High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application,” Applied Thermal Engineering, vol. 48, no. 15, pp. 72–80, 2012. View at Google Scholar
  3. B. L. Zhu, J. Ma, J. Wu, K. C. Yung, and C. S. Xie, “Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles,” Journal of Applied Polymer Science, vol. 118, no. 5, pp. 2754–2764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. H. He, R. Fu, Y. Han, Y. Shen, and D. Wang, “High thermal conductive Si3N4 particle filled epoxy composites with a novel structure,” Journal of Electronic Packaging, vol. 129, no. 4, pp. 469–472, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. X. C. Tong, K. Wattanakul, H. Manuspiya, and N. Yanumet, “Thermal conductivity and mechanical properties of BN-filled epoxy composite: effects of filler content, mixing conditions, and BN agglomerate size,” Journal of Composite Materials, vol. 45, no. 19, pp. 1967–1980, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Berber, Y. Kwon, and D. Tománek, “Unusually high thermal conductivity of carbon nanotubes,” Physical Review Letters, vol. 84, no. 20, pp. 4613–4616, 2000. View at Google Scholar · View at Scopus
  7. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Physical Review Letters, vol. 87, no. 21, Article ID 215502, 4 pages, 2001. View at Google Scholar · View at Scopus
  8. J. E. Peters, D. V. Papavassiliou, and B. P. Grady, “Unique thermal conductivity behavior of single-walled carbon nanotube-polystyrene composites,” Macromolecules, vol. 41, no. 20, pp. 7274–7277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. T. Huxtable, D. G. Cahill, S. Shenogin et al., “Interfacial heat flow in carbon nanotube suspensions,” Nature Materials, vol. 2, no. 11, pp. 731–734, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Shenogin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, “Effect of chemical functionalization on thermal transport of carbon nanotube composites,” Applied Physics Letters, vol. 85, no. 12, pp. 2229–2231, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Yang, C. M. Ma, C. Teng et al., “Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites,” Carbon, vol. 48, no. 3, pp. 592–603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. K. Yang, L. J. Yu, R. G. Peng et al., “Incorporation of liquid-like multiwalled carbon nanotubes into an epoxy matrix by solvent-free processing,” Nanotechnology, vol. 23, no. 22, Article ID 225701, 2012. View at Google Scholar
  13. Y. Yang, C. He, R. Peng et al., “Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites,” Journal of Materials Chemistry, vol. 22, no. 12, pp. 5666–5675, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Yang, X. Xie, Z. Yang et al., “Controlled synthesis and novel solution rheology of hyperbranched poly(urea-urethang)-functionalized multiwalled carbon nanotubes,” Macromolecules, vol. 40, no. 16, pp. 5858–5867, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Zhao, F. Du, X. Zhou et al., “Thermal conductive and electrical properties of polyurethane/hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotube composites,” Composites B, vol. 42, no. 8, pp. 2111–2116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Cui, F. Du, J. Zhao et al., “Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes,” Carbon, vol. 49, no. 2, pp. 495–500, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Du, K. Wu, Y. Yang, L. Liu, T. Gan, and X. Xie, “Synthesis and electrochemical probing of water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes,” Nanotechnology, vol. 19, no. 8, Article ID 085716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. F. M. Blighe, Y. R. Hernandez, W. J. Blau, and J. N. Coleman, “Observation of percolation-like scaling—far from the percolation threshold—in high volume fraction, high conductivity polymer-nanotube composite films,” Advanced Materials, vol. 19, no. 24, pp. 4443–4447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. B. E. Kilbride, J. N. Coleman, J. Fraysse et al., “Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films,” Journal of Applied Physics, vol. 92, no. 7, pp. 4024–4030, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Velasco-Santos, A. L. Martínez-Hernández, M. Lozada-Cassou, A. Alvarez-Castillo, and V. M. Castaño, “Chemical functionalization of carbon nanotubes through an organosilane,” Nanotechnology, vol. 13, no. 4, pp. 495–498, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. P. C. Ma, J. Kim, and B. Z. Tang, “Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites,” Composites Science and Technology, vol. 67, no. 14, pp. 2965–2972, 2007. View at Publisher · View at Google Scholar · View at Scopus