Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013 (2013), Article ID 564319, 6 pages
http://dx.doi.org/10.1155/2013/564319
Research Article

A Comparative Cytotoxic Evaluation of Acrylamide and Diacetone Acrylamide to Investigate Their Suitability for Holographic Photopolymer Formulations

1Centre for Industrial and Engineering Optics, Dublin Institute of Technology, Dublin 8, Ireland
2School of Physics, College of Sciences and Health, Dublin Institute of Technology, Dublin 8, Ireland
3Nanolab Research Centre, FOCAS, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland
4Department of Mathematics and Physics, Agricultural University, 4000 Plovdiv, Bulgaria

Received 30 May 2013; Accepted 1 August 2013

Academic Editor: Zhou Yang

Copyright © 2013 Dervil Cody et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Fuchs, O. Soppera, A. G. Mayes, and K. Haupt, “Holographic molecularly imprinted polymers for label-free chemical sensing,” Advanced Materials, vol. 25, no. 4, pp. 566–570, 2013. View at Google Scholar
  2. Y. Fuchs, O. Soppera, and K. Haupt, “Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—a review,” Analytica Chimica Acta, vol. 717, pp. 7–20, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Kabilan, A. J. Marshall, A. Horgan et al., “‘Smart’ holograms—a novel diagnostics platform,” in Technical Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show, vol. 3, pp. 467–470, Boston, Mass, USA, May 2006. View at Scopus
  4. A. J. Marshall, D. S. Young, J. Blyth, S. Kabilan, and C. R. Lowe, “Metabolite-sensitive holographic biosensors,” Analytical Chemistry, vol. 76, no. 5, pp. 1518–1523, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Bhatta, G. Christie, B. Madrigal-González, J. Blyth, and C. R. Lowe, “Holographic sensors for the detection of bacterial spores,” Biosensors and Bioelectronics, vol. 23, no. 4, pp. 520–527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Kabilan, A. J. Marshall, F. K. Sartain et al., “Holographic glucose sensors,” Biosensors and Bioelectronics, vol. 20, no. 8, pp. 1602–1610, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Yang, X. Pan, J. Blyth, and C. R. Lowe, “Towards the real-time monitoring of glucose in tear fluid: Holographic glucose sensors with reduced interference from lactate and pH,” Biosensors and Bioelectronics, vol. 23, no. 6, pp. 899–905, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. B. Millington, A. G. Mayes, J. Blyth, and C. R. Lowe, “A hologram biosensor for proteases,” Sensors and Actuators B, vol. 33, no. 1–3, pp. 55–59, 1996. View at Google Scholar · View at Scopus
  9. E. Leite, I. Naydenova, S. Mintova, L. Leclercq, and V. Toal, “Photopolymerizable nanocomposites for holographic recording and sensor application,” Applied Optics, vol. 49, no. 19, pp. 3652–3660, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sensors and Actuators B, vol. 139, no. 1, pp. 35–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Naydenova, S. Martin, and V. Toal, “Photopolymers-beyond the standard approach to photosensitisation,” Journal of the European Optical Society, vol. 4, Article ID 09042, 2009. View at Google Scholar
  12. I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Applied Physics Letters, vol. 92, no. 3, Article ID 031109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. X. X. Ma, G. D. Yao, H. Cheng, Q. L. Zeng, and Q. Chen, “Effects of acrylamide on DNA damage in human keratinocytes,” Analytical Chemistry, vol. 76, no. 5, pp. 1518–1523, 2004. View at Google Scholar
  14. J. E. Klaunig and L. M. Kamendulis, “Mechanisms of acrylamide induced rodent carcinogenesis,” Advances in Experimental Medicine and Biology, vol. 561, pp. 49–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Park, L. M. Kamendulis, M. A. Friedman, and J. E. Klaunig, “Acrylamide-induced cellular transformation,” Toxicological Sciences, vol. 65, no. 2, pp. 177–183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Lawrence, R. Gentry, T. McDonald et al., “Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects,” Critical Reviews in Toxicology, vol. 36, no. 6, pp. 481–608, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Tsuda, C. S. Shimizu, M. K. Taketomi et al., “Acrylamide; induction of DNA damage, chromosomal aberrations and cell transformation without gene mutations,” Mutagenesis, vol. 8, no. 1, pp. 23–29, 1993. View at Google Scholar · View at Scopus
  18. K. A. Johnson, S. J. Gorzinski, and K. M. Bodner, “Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats,” Toxicology and Applied Pharmacology, vol. 85, no. 2, pp. 154–168, 1986. View at Google Scholar · View at Scopus
  19. T. Takahashi, M. Yoshii, T. Kawano, T. Kosaka, and H. Hosoya, “A new approach for the assessment of acrylamide toxicity using a green paramecium,” Toxicology in Vitro, vol. 19, no. 1, pp. 99–105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Friedman, “Chemistry, biochemistry, and safety of acrylamide. A review,” Journal of Agricultural and Food Chemistry, vol. 51, no. 16, pp. 4504–4526, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Cody, I. Naydenova, and E. Mihaylova, “New non-toxic holographic photopolymer material,” Journal of Optics, vol. 14, no. 1, Article ID 015601, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Cody, I. Naydenova, and E. Mihaylova, “Effect of glycerol on a diacetone acrylamide-based holographic photopolymer material,” Applied Optics, vol. 52, no. 3, pp. 489–494, 2013. View at Google Scholar
  23. M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Optics Express, vol. 15, no. 19, pp. 12425–12435, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Gallego, A. Márquez, M. Ortuño, S. Marini, and J. Francés, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Optical Materials, vol. 33, no. 3, pp. 531–537, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Olivares-Perez, M. P. Hernández-Garay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl2(2H2O),” Optical Engineering, vol. 50, no. 6, Article ID 065801, 6 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Ortuno, S. Gallego, A. Marquez, C. Neipp, I. Pascual, and A. Belendez, “Biophotopol: a sustainable photopolymer for holographic data storage applications,” Materials, vol. 5, pp. 772–783, 2012. View at Google Scholar
  27. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus
  28. D. Hughes and H. Mehmet, Cell Proliferation & Apoptosis, BIOS Scientific, Oxford, UK, 2003.
  29. S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Optical Engineering, vol. 33, pp. 3942–3946, 1994. View at Google Scholar
  30. S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Applied Optics, vol. 36, no. 23, pp. 5757–5768, 1997. View at Google Scholar · View at Scopus
  31. M. S. Mahmud, I. Naydenova, T. Babeva, R. Jallapuram, S. Martin, and V. Toal, “Determination of threshold exposure and intensity for recording holograms in thick green-sensitive acrylamide-based photopolymer,” Applied Optics, vol. 49, no. 28, pp. 5276–5283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” Journal of Optics A, vol. 7, no. 5, pp. 255–260, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Optics Express, vol. 19, no. 14, pp. 13395–13404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Kogelnik, “Couple wave theory for thick hologram gratings,” Bell System Technical Journal, vol. 48, no. 9, pp. 2909–2947, 1969. View at Google Scholar · View at Scopus
  35. J. W. Trevan, “Error of determination of toxicity,” Proceedings of the Royal Society of London, vol. 101, no. 712, pp. 483–514, 1927. View at Google Scholar
  36. E. Hodgson, A Textbook of Modern Toxicology, 82, John Wiley & Sons, Hoboken, NJ, USA, 2010.
  37. J. C. Kotz, P. Triechel, and J. R. Townsend, Chemistry and Chemical Reactivity, Cengage Learning, Stamford, Conn, USA, 2009.
  38. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Applied Optics, vol. 43, no. 14, pp. 2900–2905, 2004. View at Publisher · View at Google Scholar · View at Scopus