Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013, Article ID 690675, 7 pages
http://dx.doi.org/10.1155/2013/690675
Research Article

Preparation and Properties of Clay-Reinforced Epoxy Nanocomposites

1Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jln. Grafika No. 2 Yogyakarta 55281, Indonesia
2School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

Received 30 May 2013; Revised 2 September 2013; Accepted 2 September 2013

Academic Editor: Haojun Liang

Copyright © 2013 Kusmono et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The clay-reinforced epoxy nanocomposite was prepared by the polymerization method. The effect of clay addition on the mechanical properties of epoxy/clay nanocomposites was studied through tensile, flexural, impact strength, and fracture toughness tests. The morphology and tribology behavior of epoxy/clay nanocomposites were determined by X-ray diffraction (XRD) and wear test, respectively. The wear test was performed to determine the specific abrasion of the nanocomposites. In addition, the water absorption characteristic of the nanocomposites was also investigated in this study. XRD analysis indicated that the exfoliation structure was observed in the epoxy nanocomposites with 3 wt% of clay, while the intercalated structure was shown at 6 wt% of clay. It was found that the addition of clay up to 3 wt% increased the tensile strength, flexural strength, impact strength, and the fracture toughness. On the contrary, the presence of above 3 wt% of clay produced a reverse effect. It could be concluded that the best properties in mechanical, wear resistance, and water resistance were obtained for the epoxy nanocomposites containing 3 wt% of clay.