Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013 (2013), Article ID 834595, 8 pages
http://dx.doi.org/10.1155/2013/834595
Research Article

Preparation and Structural Properties of Free Films from Rapeseed Oil-Based Rigid Polyurethane-Montmorillonite Nanocomposites

1Institute of Polymer Materials, Riga Technical University, 14/24 Azenes Strasse, Riga, LV 1048, Latvia
2Latvian State Institute of Wood Chemistry, 27 Dzerbenes Strasse, Riga, LV 1006, Latvia

Received 21 February 2013; Revised 3 June 2013; Accepted 3 June 2013

Academic Editor: Yulin Deng

Copyright © 2013 Sergey Gaidukov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Gandini, “Polymers from renewable resources: a challenge for the future of macromolecular materials,” Macromolecules, vol. 41, no. 24, pp. 9491–9504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. G.-Q. Chen and M. K. Patel, “Plastics derived from biological sources: present and future: a technical and environmental review,” Chemical Reviews, vol. 112, no. 4, pp. 2082–2099, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. R. Meier, J. O. Metzger, and U. S. Schubert, “Plant oil renewable resources as green alternatives in polymer science,” Chemical Society Reviews, vol. 36, no. 11, pp. 1788–1802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. O. Metzger, “Fats and oils as renewable feedstock for chemistry,” European Journal of Lipid Science and Technology, vol. 111, no. 9, pp. 865–876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Rinaudo, “Chitin and chitosan: properties and applications,” Progress in Polymer Science, vol. 31, no. 7, pp. 603–632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. T. Mathers, “How well can renewable resources mimic commodity monomers and polymers?” Journal of Polymer Science A, vol. 50, no. 1, pp. 1–15, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Zini and M. Scandola, “Green composites: an overview,” Polymer Composites, vol. 32, no. 12, pp. 1905–1915, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Keim, “Petrochemicals: raw material change from fossil to biomass?” Petroleum Chemistry, vol. 50, no. 4, pp. 298–304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Piegat and M. Eł Fray, “Polyethylene terephthalate modification with the monomer from renewable resources,” Polimery/Polymers, vol. 52, no. 11-12, pp. 885–888, 2007. View at Google Scholar · View at Scopus
  10. B. A. J. Noordover, “Polyesters, polycarbonates and polyamides based on renewable resources,” in Renewable Polymers, pp. 305–354, John Wiley and Sons, 2011. View at Google Scholar
  11. A. Morschbacker, “Bio-ethanol based ethylene,” Polymer Reviews, vol. 49, no. 2, pp. 79–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Deng, X. D. Fan, and J. Waterhouse, “Synthesis and characterization of soy-based copolyamides with different alpha-amino acids,” Journal of Applied Polymer Science, vol. 73, pp. 1081–1088, 1999. View at Google Scholar
  13. Y. Takada, K. Shinbo, Y. Someya, and M. Shibata, “Preparation and properties of bio-based epoxy montomorillonite nanocomposites derived from polyglycerol polyglycidyl ether and ε-polylysine,” Journal of Applied Polymer Science, vol. 113, no. 1, pp. 479–484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. S. Petrovic, “Polyurethanes from vegetable oils,” Polymer Reviews, vol. 48, no. 1, pp. 109–155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Sudesh, H. Abe, and Y. Doi, “Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters,” Progress in Polymer Science, vol. 25, no. 10, pp. 1503–1555, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Fukushima and Y. Kimura, “Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application,” Polymer International, vol. 55, no. 6, pp. 626–642, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. A. McGlashan and P. J. Halley, “Preparation and characterisation of biodegradable starch-based nanocomposite materials,” Polymer International, vol. 52, no. 11, pp. 1767–1773, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Rojek and A. Prociak, “Effect of different rapeseed-oil-based polyols on mechanical properties of flexible polyurethane foams,” Journal of Applied Polymer Science, vol. 125, pp. 2936–2945, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. C. S. Lee, T. L. Ooi, C. H. Chuah, and S. Ahmad, “Rigid polyurethane foam production from palm oil-based epoxidized diethanolamides,” Journal of the American Oil Chemists' Society, vol. 84, no. 12, pp. 1161–1167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Beneš, T. Vlček, R. Černá, J. Hromádková, Z. Walterová, and R. Svitáková, “Polyurethanes with bio-based and recycled components,” European Journal of Lipid Science and Technology, vol. 114, pp. 71–83, 2012. View at Google Scholar
  21. C. Bueno-Ferrer, E. Hablot, F. Perrin-Sarazin, M. C. Garrigَs, A. Jiménez, and L. Averous, “Structure and morphology of new bio-based thermoplastic polyurethanes obtained from dimeric fatty acids,” Macromolecular Materials and Engineering, vol. 297, no. 8, pp. 777–784, 2012. View at Google Scholar
  22. J. Xiong, Y. Liu, X. Yang, and X. Wang, “Thermal and mechanical properties of polyurethane/montmorillonite nanocomposites based on a novel reactive modifier,” Polymer Degradation and Stability, vol. 86, no. 3, pp. 549–555, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. W. J. Choi, S. H. Kim, Y. Jin Kim, and S. C. Kim, “Synthesis of chain-extended organifier and properties of polyurethane/clay nanocomposites,” Polymer, vol. 45, no. 17, pp. 6045–6057, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Salahuddin, S. A. Abo-El-Enein, A. Selim, and O. Salah El-Dien, “Synthesis and characterization of polyurethane/organo-montmorillonite nanocomposites,” Applied Clay Science, vol. 47, no. 3-4, pp. 242–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. K. Barick and D. K. Tripathy, “Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites,” Materials Science and Engineering B, vol. 176, no. 18, pp. 1435–1447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Şen and G. Çayli, “Synthesis of bio-based polymeric nanocomposites from acrylated epoxidized soybean oil and montmorillonite clay in the presence of a bio-based intercalant,” Polymer International, vol. 59, no. 8, pp. 1122–1129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. V. M. Wik, M. I. Aranguren, and M. A. Mosiewicki, “Castor oil-based polyurethanes containing cellulose nanocrystals,” Polymer Engineering and Science, vol. 51, no. 7, pp. 1389–1396, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Zhu, S. Bandyopadhyay-Ghosh, M. Khazabi, H. Cai, C. Correa, and M. Sain, “Reinforcement of soy polyol-based rigid polyurethane foams by cellulose microfibers and nanoclays,” Journal of Applied Polymer Science, vol. 124, no. 6, pp. 4702–4710, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. U. Stirna, A. Fridrihsone, B. Lazdina, M. Misane, and D. Vilsone, “Biobased polyurethanes from rapeseed oil polyols: structure, mechanical and thermal properties,” Journal of Polymers and the Environment, pp. 1–11, 2012. View at Publisher · View at Google Scholar
  30. S. Gaidukov, Polymer nanocomposites filled with nanoscale placoid particles of montmorillonite [Doctoral thesis], Riga Technical university, 2008.
  31. M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Materials Science and Engineering R, vol. 28, no. 1, pp. 1–63, 2000. View at Publisher · View at Google Scholar · View at Scopus