Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2014, Article ID 847309, 5 pages
http://dx.doi.org/10.1155/2014/847309
Research Article

Utilization of Zinc Dust for a Core Monomer 2-Bromo-3-hexylthien-5-ylzinc Bromide: Its Synthesis and Application for the Preparation of Regioregular Poly(3-hexylthiophene)

Department of Chemistry, Dankook University, 119 Dandae-ro, Cheonan 330-714, Republic of Korea

Received 30 April 2014; Accepted 26 June 2014; Published 9 July 2014

Academic Editor: Marek Cypryk

Copyright © 2014 Seung-Hoi Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay, and A. Salleo, “Materials and applications for large area electronics: Solution-based approaches,” Chemical Reviews, vol. 110, no. 1, pp. 3–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers,” Science, vol. 280, no. 5370, pp. 1741–1744, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Liao, S. Y. Chen, and D. M. Liu, “In-situ growing CdS single-crystal nanorods via P3HT polymer as a soft template for enhancing photovoltaic performance,” Macromolecules, vol. 42, no. 17, pp. 6558–6563, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angewandte Chemie, vol. 47, no. 1, pp. 58–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Y.-J. Cheng, S.-H. Yang, and C.-S. Hsu, “Synthesis of conjugated polymers for organic solar cell applications,” Chemical Reviews, vol. 109, no. 11, pp. 5868–5923, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Advanced Functional Materials, vol. 15, no. 10, pp. 1617–1622, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. J. Heeger, “Semiconducting and metallic polymers: the fourth generation of polymeric materials,” Angewandte Chemie International Edition, vol. 40, no. 14, pp. 2591–2611, 2001. View at Publisher · View at Google Scholar
  8. T. A. Chen and R. D. Rieke, “The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: nickel versus palladium catalyst of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization,” Journal of the American Chemical Society, vol. 114, no. 25, pp. 10087–10088, 1992. View at Google Scholar
  9. R. D. McCullough, “The chemistry of conducting polythiophenes,” Advanced Materials, vol. 10, no. 2, pp. 93–116, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Higashihara, E. Goto, and M. Ueda, “Purification-free and protection-free synthesis of regioregular poly(3-hexylthiophene) and poly(3-(6-hydroxyhexyl)thiophene) using a zincate complex oft Bu4 ZnLi,” ACS Macro Letters, vol. 1, no. 1, pp. 167–170, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. Wang, R. Takita, Y. Kikuzaki, and F. Ozawa, “Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: an efficient approach to head-to-tail poly(3-hexylthiophene),” Journal of the American Chemical Society, vol. 132, no. 33, pp. 11420–11421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. H. Kim and R. D. Rieke, “Thienylmanganese halides for the preparation of regioregular poly(3-hexylthiophene),” Synthetic Metals, vol. 159, no. 17-18, pp. 1900–1902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Kim, S. Kim, and R. D. Rieke, “A novel approach to regioregular poly(3-hexylthiophene) via thienylzinc reagents,” Macromolecular Research, vol. 19, no. 7, pp. 749–752, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Chen, X. Wu, and R. D. Rieke, “Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by Rieke zinc: their characterization and solid-state properties,” Journal of the American Chemical Society, vol. 117, no. 1, pp. 233–244, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. R. D. McCullough, R. D. Lowe, M. Jayaraman, and D. L. Anderson, “Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly(3-alkylthiophenes),” Journal of Organic Chemistry, vol. 58, no. 4, pp. 904–912, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. R. S. Loewe, S. M. Khersonsky, and R. D. McCullough, “A simple method to prepare head-to-tail coupled, regioregular poly(3-alkylthiophenes) using Grignard metathesis,” Advanced Materials, vol. 11, no. 3, pp. 250–253, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. I. A. Liversedge, S. J. Higgins, M. Giles, M. Heeney, and I. M. McCulloch, “Suzuki route to regioregular polyalkylthiophenes using Ir-catalysed borylation to make the monomer, and Pd complexes of bulky phosphanes as coupling catalysts for polymerisation,” Tetrahedron Letters, vol. 47, no. 29, pp. 5143–5146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Guillerez and G. Bidan, “New convenient synthesis of highly regioregular poly(3-octylthiophene) based on the Suzuki coupling reaction,” Synthetic Metals, vol. 93, no. 2, pp. 123–126, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. R. D. McCullough, P. C. Ewbank, and R. S. Loewe, “Self-assembly and disassembly of regioregular, water soluble polythiophenes: chemoselective ionchromatic sensing in water,” Journal of the American Chemical Society, vol. 119, no. 3, pp. 633–634, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Huo, “Highly efficient, general procedure for the preparation of alkylzinc reagents from unactivated alkyl bromides and chlorides,” Organic Letters, vol. 5, no. 4, pp. 423–425, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Zhou and G. C. Fu, “Cross-coupling of unactivated secondary alkyl halides: room-temperature nickel-catalyzed Negishi reactions of alkyl bromides and iodides,” Journal of the American Chemical Society, vol. 125, no. 48, pp. 14726–14727, 2003. View at Publisher · View at Google Scholar · View at Scopus