Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2016, Article ID 7109825, 8 pages
http://dx.doi.org/10.1155/2016/7109825
Research Article

Alginate Production from Alternative Carbon Sources and Use of Polymer Based Adsorbent in Heavy Metal Removal

Department of Environmental Engineering, Akdeniz University, 07058 Antalya, Turkey

Received 29 January 2016; Accepted 23 February 2016

Academic Editor: Bernabé Luis Rivas

Copyright © 2016 Çiğdem Kıvılcımdan Moral and Merve Yıldız. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Alginate is a biopolymer composed of mannuronic and guluronic acids. It is harvested from marine brown algae; however, alginate can also be synthesized by some bacterial species, namely, Azotobacter and Pseudomonas. Use of pure carbohydrate sources for bacterial alginate production increases its cost and limits the chance of the polymer in the industrial market. In order to reduce the cost of bacterial alginate production, molasses, maltose, and starch were utilized as alternative low cost carbon sources in this study. Results were promising in the case of molasses with the maximum 4.67 g/L of alginate production. Alginates were rich in mannuronic acid during early fermentation independent of the carbon sources while the highest guluronic acid content was obtained as 68% in the case of maltose. The polymer was then combined with clinoptilolite, which is a natural zeolite, to remove copper from a synthetic wastewater. Alginate-clinoptilolite beads were efficiently adsorbed copper up to 131.6 mg Cu2+/g adsorbent at pH 4.5 according to the Langmuir isotherm model.