Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2017, Article ID 8364710, 16 pages
https://doi.org/10.1155/2017/8364710
Research Article

Thermal Synthesis of Polypeptides from N-Butyloxycarbonyl Oligopeptides Containing Aspartyl Residue at C-Terminus

1Department of Science Education, Naruto University of Education, Naruto, Tokushima 772-8502, Japan
2Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-857, Japan

Correspondence should be addressed to Toratane Munegumi; pj.ca.u-oturan@imugenumt

Received 4 January 2017; Revised 22 May 2017; Accepted 12 June 2017; Published 30 July 2017

Academic Editor: Peng He

Copyright © 2017 Toratane Munegumi and Takafumi Yamada. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Johns, Chemistry and Biochemistry of Amino Acids, Peptides, vol. 4, Marcel Decker Inc., New York, NY, USA, 1977.
  2. Y. Imanishi, “Polymerization Of α-amino acid N-carboxyanhydride in the presence of preformed poly(α-Amino Acid)—from chain effect to stereoselective polymerization,” Pure and Applied Chemistry, vol. 53, no. 3, pp. 715–727, 1981. View at Publisher · View at Google Scholar · View at Scopus
  3. H. R. Kricheldorf, “Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides,” Angewandte Chemie, vol. 45, no. 35, pp. 5752–5784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. C. Brown and L. E. Glynn, “The antigenicity of sequential polypeptides. II. The antigenicity of some sequential polymers including several related to collagen,” Immunology, vol. 25, no. 2, pp. 251–260, 1973. View at Google Scholar · View at Scopus
  5. J. Ramachandran, A. Berger, and E. Katchalski, “Synthesis and physicochemical properties in aqueous solution of the sequential polypeptide poly(Tyr‐Ala‐Glu),” Biopolymers, vol. 10, no. 10, pp. 1829–1851, 1971. View at Publisher · View at Google Scholar · View at Scopus
  6. R. S. Rapaka and D. W. Urry, “Coacervation of sequential polypeptide models of tropoelastin. Synthesis of H-(Val-Ala-Pro-Gly)n-Val-OMe and H-(Val-Pro-Gly-Gly)n-Val-OMe,” International Journal of Peptide and Protein Research, vol. 11, no. 2, pp. 97–108, 1978. View at Publisher · View at Google Scholar · View at Scopus
  7. R. S. Rapaka, K. Okamoto, and D. W. Urry, “Non-elastomeric polypeptide models of elastin. Synthesis of polyhexapeptides and a cross-linked polyhexapeptide,” International Journal of Peptide and Protein Research, vol. 11, no. 2, pp. 109–127, 1978. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Sakakibara, Y. Kishida, Y. Kikuchi, R. Sakai, and K. Kakiuchi, “Synthesis of poly-(L-prolyl-L-prolylglycyl) of defined molecular weights,” Bulletin of the Chemical Society of Japan, vol. 41, no. 5, pp. 1273–1273, 1968. View at Publisher · View at Google Scholar
  9. H. Leuchs, “Ueber die Glycin‐carbonsäure,” Berichte der Deutschen Chemischen Gesellschaft, vol. 39, no. 1, pp. 857–861, 1906. View at Publisher · View at Google Scholar · View at Scopus
  10. R. B. Woodward and C. H. Schramm, “Synthesis of protein analogs,” Journal of the American Chemical Society, vol. 69, no. 6, pp. 1551-1552, 1947. View at Publisher · View at Google Scholar · View at Scopus
  11. A. B. Hughes, Amino Acids, Peptides and Proteins in Organic Chemistry, Building Blocks, Catalysis and Coupling Chemistry (Amino Acids, Peptides and Proteins in Organic Chemistry (VCH)), Wiley & Sons, New York, NY, USA, 2011. View at Publisher · View at Google Scholar
  12. Humana Press, “Peptide Synthesis and Applications,” in Methods in Molecular Biology, K. J. Jensen, A. P. Tofteng, and S. L. Pedersen, Eds., Springer, New York, NY, USA, 2nd edition, 2013. View at Google Scholar
  13. A. Vegotsky, K. Harada, and S. W. Fox, “The characterization of polyaspartic acid and some related compounds,” Journal of the American Chemical Society, vol. 80, no. 13, pp. 3361–3366, 1958. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Kovacs, H. N. Kovacs, I. Könyves, J. Császár, T. Vajda, and H. Mix, “Chemical studies of polyaspartic acids,” Journal of Organic Chemistry, vol. 26, no. 4, pp. 1084–1091, 1961. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Munegumi, Y.-Q. Meng, and K. Harada, “Thermal Syntheses of Polypeptides from N-Boc-amino acid (Aspartic acid, β-aminoglutaric acid) anhydrides,” Chemistry Letters, vol. 17, no. 10, pp. 1643–1646, 1988. View at Publisher · View at Google Scholar
  16. T. Munegumi and K. Harada, “Synthesis of polypeptides from amino acid derivatives melted upon heating,” Peptide Chemistry 1990, pp. 75–78, 1991. View at Google Scholar
  17. W. Parr and P. Howard, “Separation of amino acid enantiomers by gas chromatography with an optically active stationary phase (N-TFA-L-valyl-L-leucine cyclohexyl ester),” Chromatographia, vol. 4, no. 4, pp. 162–166, 1971. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Frank, G. J. Nicholson, and E. Bayer, “Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase,” Journal of Chromatographic Science, vol. 15, no. 5, pp. 174–176, 1977. View at Publisher · View at Google Scholar · View at Scopus
  19. J. S. Davis, Amino Acid and Peptides, Chapman and Hall, London, UK, 1985.
  20. T. Munegumi, Y. Qing Meng, and K. Harada, “Polypeptide formation by heating N-t-butyloxycarbonyl acidic amino acid derivatives,” Asian Journal of Chemistry, vol. 26, no. 15, pp. 4716–4722, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Munegumi, K. Akao, Y. Kawatu, T. Yamada, and K. Harada, “Heating reactions of N-t-Butyloxycarbonyl-Asparagine and related compounds,” Asian Journal of Chemistry, vol. 26, no. 19, pp. 6541–6548, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. G. G. Smith and B. S. De Sol, “Racemization of amino acids in dipeptides shows COOH > NH2 for non-sterically hindered residues,” Science, vol. 207, no. 4432, pp. 765–767, 1980. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Harada, M. Matsuyama, and E. Kokufuta, “The aqueous thermal polycondensation of asparagine and isoasparagine and the structure of polyaspartic acid,” Polymer Bulletin, vol. 1, no. 3, pp. 177–180, 1978. View at Publisher · View at Google Scholar · View at Scopus
  24. J. L. Radkiewicz, H. Zipse, S. Clarke, and K. N. Houk, “Accelerated racemization of aspartic acid and asparagine residues via succinimide intermediates: an ab initio theoretical exploration of mechanism,” Journal of the American Chemical Society, vol. 118, no. 38, pp. 9148–9155, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. J. L. Radkiewicz, H. Zipse, S. Clarke, and K. N. Houk, “Neighboring side chain effects on asparaginyl and aspartyl degradation: an Ab initio study of the relationship between peptide conformation and backbone NH acidity,” Journal of the American Chemical Society, vol. 123, no. 15, pp. 3499–3506, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Brückner, S.-C. Bunz, D. Imhof, C. Neusüß, and G. K. E. Scriba, “Isomerization and epimerization of the aspartyl tetrapeptide Ala-Phe-Asp-GlyOH at pH 10-A CE study,” Electrophoresis, vol. 34, no. 18, pp. 2666–2673, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. A. D. Borthwick, “2,5-diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products,” Chemical Reviews, vol. 112, no. 7, pp. 3641–3716, 2012. View at Publisher · View at Google Scholar · View at Scopus